1
|
Carlsson B, Karlsson L, Ärlemalm A, Sund S, Appell ML. Quantification of deoxythioguanosine in human DNA with LC-MS/MS, a marker for thiopurine therapy optimisation. Anal Bioanal Chem 2024; 416:6711-6723. [PMID: 39397163 PMCID: PMC11579148 DOI: 10.1007/s00216-024-05581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
In the treatment of diseases such as acute childhood leukaemia (ALL) and inflammatory bowel disease (IBD), the thiopurines azathioprine, 6-mercaptopurine, and 6-thioguanine are used. Thiopurines are antimetabolites and immunomodulators used to maintain remission in patients. They are all prodrugs and must be converted into the competing antimetabolites thioguanosine triphosphate and deoxythioguanosine triphosphate for final incorporation into RNA or DNA. The current therapeutic drug monitoring (TDM) method measures the sum of the formed metabolites in the sample, after acidic hydrolysis at high temperature. In this work, the goal is to measure these drugs closer to their pharmacological endpoints, once incorporated into DNA. After extracting DNA from whole blood, followed by DNA hydrolysis, 2'-deoxythioguanosine (dTG) and the complementary natural nucleobase 2'-deoxycytidine (dC) were measured. Chromatographic separation on a HSS T3 column followed by mass spectrometric detection was performed in multi-reaction monitoring (MRM) mode on a Xevo TQ-XS with ESI in positive mode, within 5 min. The concentration range for dTG was 0.04-5 nmol/L, and for dC, 0.1-12.5 µmol/L. The lower limit of detection was determined to a concentration of 0.003 nmol/L for dTG and 0.019 µmol/L for dC. The intra- and inter-assay imprecision for the quality controls ranged between 3.0 and 5.1% and between 8.4 and 10.9%, respectively. Sample stability for up to 4 years is shown. In summary, a sensitive method to quantify the thiopurines incorporated into DNA as dTG has been developed and will be used in further clinical studies for a better understanding of the mode of action of the thiopurines and the use of this method in TDM.
Collapse
Affiliation(s)
- Björn Carlsson
- Department of Clinical Pharmacology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Louise Karlsson
- Department of Clinical Pharmacology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Ärlemalm
- Department of Clinical Pharmacology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sophie Sund
- Department of Clinical Pharmacology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
2
|
Bayoumy AB, Ansari AR, Mulder CJJ, Schmiegelow K, Florin T, De Boer NKH. Innovating Thiopurine Therapeutic Drug Monitoring: A Systematic Review and Meta-Analysis on DNA-Thioguanine Nucleotides (DNA-TG) as an Inclusive Biomarker in Thiopurine Therapy. Clin Pharmacokinet 2024; 63:1089-1109. [PMID: 39031224 PMCID: PMC11343975 DOI: 10.1007/s40262-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Thioguanine (TG), azathioprine (AZA), and mercaptopurine (MP) are thiopurine prodrugs commonly used to treat diseases, such as leukemia and inflammatory bowel disease (IBD). 6-thioguanine nucleotides (6-TGNs) have been commonly used for monitoring treatment. High levels of 6-TGNs in red blood cells (RBCs) have been associated with leukopenia, the cutoff levels that predict this side effect remain uncertain. Thiopurines are metabolized and incorporated into leukocyte DNA. Measuring levels of DNA-incorporated thioguanine (DNA-TG) may be a more suitable method for predicting clinical response and toxicities such as leukopenia. Unfortunately, most methodologies to assay 6-TGNs are unable to identify the impact of NUDT15 variants, effecting mostly ethnic populations (e.g., Chinese, Indian, Malay, Japanese, and Hispanics). DNA-TG tackles this problem by directly measuring thioguanine in the DNA, which can be influenced by both TPMT and NUDT15 variants. While RBC 6-TGN concentrations have traditionally been used to optimize thiopurine therapy due to their ease and affordability of measurement, recent developments in liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have made measuring DNA-TG concentrations in lymphocytes accurate, reproducible, and affordable. The objective of this systematic review was to assess the current evidence of DNA-TG levels as marker for thiopurine therapy, especially with regards to NUDT15 variants. METHODS A systematic review and meta-analysis were performed on the current evidence for DNA-TG as a marker for monitoring thiopurine therapy, including methods for measurement and the illustrative relationship between DNA-TG and various gene variants (such as TPMT, NUDT15, ITPA, NT5C2, and MRP4). PubMed and Embase were systematically searched up to April 2024 for published studies, using the keyword "DNA-TG" with MeSH terms and synonyms. The electronic search strategy was augmented by a manual examination of references cited in articles, recent reviews, editorials, and meta-analyses. A meta-analysis was performed using R studio 4.1.3. to investigate the difference between the coefficients (Fisher's z-transformed correlation coefficient) of DNA-TG and 6-TGNs levels. A meta-analysis was performed using RevMan version 5.4 to investigate the difference in DNA-TG levels between patients with or without leukopenia using randomized effect size model. The risk of bias was assessed using the Newcastle-Ottowa quality assessment scale. RESULTS In this systematic review, 21 studies were included that measured DNA-TG levels in white blood cells for either patients with ALL (n = 16) or IBD (n = 5). In our meta-analysis, the overall mean difference between patients with leukopenia (ALL + IBD) versus no leukopenia was 134.15 fmol TG/µg DNA [95% confidence interval (CI) (83.78-184.35), P < 0.00001; heterogeneity chi squared of 5.62, I2 of 47%]. There was a significant difference in DNA-TG levels for patients with IBD with and without leukopenia [161.76 fmol TG/µg DNA; 95% CI (126.23-197.29), P < 0.00001; heterogeneity chi squared of 0.20, I2 of 0%]. No significant difference was found in DNA-TG level between patients with ALL with or without leukopenia (57.71 fmol TG/µg DNA [95% CI (- 22.93 to 138.35), P < 0.80]). DNA-TG monitoring was found to be a promising method for predicting relapse rates in patients with ALL, and DNA-TG levels are likely a better predictor for leukopenia in patients with IBD than RBC 6-TGNs levels. DNA-TG levels have been shown to correlate with various gene variants (TPMT, NUDT15, ITPA, and MRP4) in various studies, points to its potential as a more informative marker for guiding thiopurine therapy across diverse genetic backgrounds. CONCLUSIONS This systematic review strongly supports the further investigation of DNA-TG as a marker for monitoring thiopurine therapy. Its correlation with treatment outcomes, such as relapse-free survival in ALL and the risk of leukopenia in IBD, underscores its role in enhancing personalized treatment approaches. DNA-TG effectively identifies NUDT15 variants and predicts late leukopenia in patients with IBD, regardless of their NUDT15 variant status. The recommended threshold for late leukopenia prediction in patients with IBD with DNA-TG is suggested to be between 320 and 340 fmol/µg DNA. More clinical research on DNA-TG implementation is mandatory to improve patient care and to improve inclusivity in thiopurine treatment.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Department of Internal Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands.
| | - A R Ansari
- Department of Gastroenterology and Hepatology, London Bridge Hospital, London, UK
| | - C J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The Juliane Marie Centre, The University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, The Faculty of Health Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Timothy Florin
- Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - N K H De Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Jamal A, Asseri AH, Ali EMM, El-Gowily AH, Khan MI, Hosawi S, Alsolami R, Ahmed TA. Preparation of 6-Mercaptopurine Loaded Liposomal Formulation for Enhanced Cytotoxic Response in Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4029. [PMID: 36432314 PMCID: PMC9695241 DOI: 10.3390/nano12224029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
6-Mercaptopurine (6-MP) is a well-known immunosuppressive medication with proven anti-proliferative activities. 6-MP possesses incomplete and highly variable oral absorption due to its poor water solubility, which might reduce its anti-cancer properties. To overcome these negative effects, we developed neutral and positively charged drug-loaded liposomal formulations utilizing the thin-film hydration technique. The prepared liposomal formulations were characterized for their size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The average size of the prepared liposomes was between 574.67 ± 37.29 and 660.47 ± 44.32 nm. Positively charged liposomes (F1 and F3) exhibited a lower PDI than the corresponding neutrally charged ones (F2 and F4). Entrapment efficiency was higher in the neutral liposomes when compared to the charged formulation. F1 showed the lowest IC50 against HepG2, HCT116, and MCF-7 cancer cells. HepG2 cells treated with F1 showed the highest level of inhibition of cell proliferation with no evidence of apoptosis. Cell cycle analysis showed an increase in the G1/G0 and S phases, along with a decrease in the G2/M phases in the cell lines treated with drug loaded positively charged liposomes when compared to free positive liposomes, indicating arrest of cells in the S phase due to the stoppage of priming and DNA synthesis outside the mitotic phase. As a result, liposomes could be considered as an effective drug delivery system for treatment of a variety of cancers; they provide a chance that a nanoformulation of 6-MP will boost the cytotoxicity of the drug in a small pharmacological dose which provides a dosage advantage.
Collapse
Affiliation(s)
- Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H. Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Afnan H. El-Gowily
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Alsolami
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Saxena S, Krishna Murthy TP, Chandrashekhar CR, Patil LS, Aditya A, Shukla R, Yadav AK, Singh TR, Samantaray M, Ramaswamy A. A bioinformatics approach to the identification of novel deleterious mutations of human TPMT through validated screening and molecular dynamics. Sci Rep 2022; 12:18872. [PMID: 36344599 PMCID: PMC9640560 DOI: 10.1038/s41598-022-23488-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Polymorphisms of Thiopurine S-methyltransferase (TPMT) are known to be associated with leukemia, inflammatory bowel diseases, and more. The objective of the present study was to identify novel deleterious missense SNPs of TPMT through a comprehensive in silico protocol. The initial SNP screening protocol used to identify deleterious SNPs from the pool of all TPMT SNPs in the dbSNP database yielded an accuracy of 83.33% in identifying extremely dangerous variants. Five novel deleterious missense SNPs (W33G, W78R, V89E, W150G, and L182P) of TPMT were identified through the aforementioned screening protocol. These 5 SNPs were then subjected to conservation analysis, interaction analysis, oncogenic and phenotypic analysis, structural analysis, PTM analysis, and molecular dynamics simulations (MDS) analysis to further assess and analyze their deleterious nature. Oncogenic analysis revealed that all five SNPs are oncogenic. MDS analysis revealed that all SNPs are deleterious due to the alterations they cause in the binding energy of the wild-type protein. Plasticity-induced instability caused by most of the mutations as indicated by the MDS results has been hypothesized to be the reason for this alteration. While in vivo or in vitro protocols are more conclusive, they are often more challenging and expensive. Hence, future research endeavors targeted at TPMT polymorphisms and/or their consequences in relevant disease progressions or treatments, through in vitro or in vivo means can give a higher priority to these SNPs rather than considering the massive pool of all SNPs of TPMT.
Collapse
Affiliation(s)
- Sidharth Saxena
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - T P Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India.
| | - C R Chandrashekhar
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Lavan S Patil
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Abhinav Aditya
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Solan, Himachal Pradesh, 173234, India
| | - Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Solan, Himachal Pradesh, 173234, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Solan, Himachal Pradesh, 173234, India
| | - Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
5
|
Selective CDK9 Inhibition by Natural Compound Toyocamycin in Cancer Cells. Cancers (Basel) 2022; 14:cancers14143340. [PMID: 35884401 PMCID: PMC9324262 DOI: 10.3390/cancers14143340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary By combining drug screens, transcriptomic studies, and in vitro assays, our study identified the natural product toyocamycin as a potent and selective CDK9 inhibitor. Thus, toyocamycin can be used as a new small molecule to modulate CDK9 activity in preclinical research. Through docking simulations, we identified its specific binding sites, which could spark some interest to design novel small molecule CDK9 inhibitors. Abstract Aberrant transcription in cancer cells involves the silencing of tumor suppressor genes (TSGs) and activation of oncogenes. Transcriptomic changes are associated with epigenomic alterations such as DNA-hypermethylation, histone deacetylation, and chromatin condensation in promoter regions of silenced TSGs. To discover novel drugs that trigger TSG reactivation in cancer cells, we used a GFP-reporter system whose expression is silenced by promoter DNA hypermethylation and histone deacetylation. After screening a natural product drug library, we identified that toyocamycin, an adenosine-analog, induces potent GFP reactivation and loss of clonogenicity in human colon cancer cells. Connectivity-mapping analysis revealed that toyocamycin produces a pharmacological signature mimicking cyclin-dependent kinase (CDK) inhibitors. RNA-sequencing revealed that the toyocamycin transcriptomic signature resembles that of a specific CDK9 inhibitor (HH1). Specific inhibition of RNA Pol II phosphorylation level and kinase assays confirmed that toyocamycin specifically inhibits CDK9 (IC50 = 79 nM) with a greater efficacy than other CDKs (IC50 values between 0.67 and 15 µM). Molecular docking showed that toyocamycin efficiently binds the CDK9 catalytic site in a conformation that differs from other CDKs, explained by the binding contribution of specific amino acids within the catalytic pocket and protein backbone. Altogether, we demonstrated that toyocamycin exhibits specific CDK9 inhibition in cancer cells, highlighting its potential for cancer chemotherapy.
Collapse
|
6
|
Khaeso K, Komvilaisak P, Chainansamit SO, Nakkam N, Suwannaying K, Kuwatjanakul P, Hikino K, Dornsena A, Kanjanawart S, Laoaroon N, Vannaprasaht S, Taketani T, Tassaneeyakul W. NUDT15 is a key genetic factor for prediction of hematotoxicity in pediatric patients who received a standard low dosage regimen of 6-mercaptopurine. Drug Metab Pharmacokinet 2021; 43:100436. [PMID: 35016134 DOI: 10.1016/j.dmpk.2021.100436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022]
Abstract
6-Mercaptopurine (6-MP) is commonly used for treatment of acute lymphoblastic leukemia (ALL). The incidence of hematotoxicity caused by this drug is quite high in Asians even using a standard low dosage regimen. The present study was aimed to elucidate the impact of thiopurine S-methyltransferase (TPMT), a nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15), inosine triphosphatase (ITPA) and ATP Binding Cassette Subfamily C Member 4 (ABCC4) polymorphisms on hematotoxicity in pediatric patients who received a standard low starting dose of 6-MP. One hundred and sixty-nine pediatric patients were enrolled and their genotypes were determined. Patients who carried NUDT15∗3 and NUDT15∗2 genotypes were at a 10-15 fold higher risk of severe neutropenia than those of the wild-type during the early months of the maintenance phase. Risk of neutropenia was not significantly increased in patients with other NUDT15 variants as well as in patients with TPMT, ITPA or ABCC4 variants. These results suggest that NUDT15 polymorphisms particularly, NUDT15∗3 and NUDT15∗2, play major roles in 6-MP-induced severe hematotoxicity even when using a standard low dosage of 6-MP and genotyping of these variants is necessary in order to obtain precise tolerance doses and avoid severe hematotoxicity in pediatric patients.
Collapse
Affiliation(s)
- Kanyarat Khaeso
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | | | | | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Kunanya Suwannaying
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | | | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Areerat Dornsena
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sirimas Kanjanawart
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Napat Laoaroon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | - Suda Vannaprasaht
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, Izumo, Japan
| | | |
Collapse
|
7
|
Genova E, Lucafò M, Pelin M, Di Paolo V, Quintieri L, Decorti G, Stocco G. Insights into the cellular pharmacokinetics and pharmacodynamics of thiopurine antimetabolites in a model of human intestinal cells. Chem Biol Interact 2021; 347:109624. [PMID: 34416244 DOI: 10.1016/j.cbi.2021.109624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines, immunomodulating drugs used in the management of different chronic autoimmune conditions and as anti-leukemic agents, may exert in some cases gastrointestinal toxicity. Moreover, since these agents are administered orally, they are absorbed across the gastrointestinal tract epithelium. On these premises, cellular and molecular events occurring in intestinal cells may be important to understand thiopurine effects. However, quantitative information on the biotransformation of thiopurines in intestinal tissues is still limited. To shed light on biotransformation processes specific of the intestinal tissue, in this study thiopurine metabolites concentrations were analyzed by an in vitro model of human healthy colon, the HCEC cell line, upon exposure to cytotoxic concentrations of azathioprine or mercaptopurine; the investigation was carried out using an innovative mass spectrometry method, that allowed the simultaneous quantification of 11 mono-, di-, and triphosphate thionucleotides. Among the 11 metabolites evaluated, TIMP, TGMP, TGDP, TGTP, MeTIMP, MeTIDP and MeTITP were detectable in HCEC cells treated with azathioprine or mercaptopurine, considering two different incubation times before the addition of the drugs (4 and 48 h). Different associations between metabolites concentrations and cytotoxicity were detected. In particular, the cytotoxicity was dependent on the TGMP, TGDP, TGTP and MeTITP concentrations after the 4 h incubation before the addition of thiopurines. This may be an indication that, to study the association between thiopurine metabolite concentrations and the cytotoxicity activity in vitro, short growth times before treatment should be used. Moreover, for the first time our findings highlight the strong correlation between cytotoxicity and thiopurine pharmacokinetics in HCEC intestinal cells in vitro suggesting that these cells could be a suitable in vitro model for studying thiopurine intestinal cytotoxicity.
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Pierro J, Saliba J, Narang S, Sethia G, Saint Fleur-Lominy S, Chowdhury A, Qualls A, Fay H, Kilberg HL, Moriyama T, Fuller TJ, Teachey DT, Schmiegelow K, Yang JJ, Loh ML, Brown PA, Zhang J, Ma X, Tsirigos A, Evensen NA, Carroll WL. The NSD2 p.E1099K Mutation Is Enriched at Relapse and Confers Drug Resistance in a Cell Context-Dependent Manner in Pediatric Acute Lymphoblastic Leukemia. Mol Cancer Res 2020; 18:1153-1165. [PMID: 32332049 DOI: 10.1158/1541-7786.mcr-20-0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
The NSD2 p.E1099K (EK) mutation is observed in 10% of acute lymphoblastic leukemia (ALL) samples with enrichment at relapse indicating a role in clonal evolution and drug resistance. To discover mechanisms that mediate clonal expansion, we engineered B-precursor ALL (B-ALL) cell lines (Reh, 697) to overexpress wildtype (WT) and EK NSD2, but observed no differences in proliferation, clonal growth, or chemosensitivity. To address whether NSD2 EK acts collaboratively with other pathways, we used short hairpin RNAs to knockdown expression of NSD2 in B-ALL cell lines heterozygous for NSD2 EK (RS4;11, RCH-ACV, SEM). Knockdown resulted in decreased proliferation in all lines, decreased clonal growth in RCH-ACV, and increased sensitivity to cytotoxic chemotherapeutic agents, although the pattern of drug sensitivity varied among cell lines implying that the oncogenic properties of NSD2 mutations are likely cell context specific and rely on cooperative pathways. Knockdown of both Type II and REIIBP EK isoforms had a greater impact than knockdown of Type II alone, suggesting that both SET containing EK isoforms contribute to phenotypic changes driving relapse. Furthermore, in vivo models using both cell lines and patient samples revealed dramatically enhanced proliferation of NSD2 EK compared with WT and reduced sensitivity to 6-mercaptopurine in the relapse sample relative to diagnosis. Finally, EK-mediated changes in chromatin state and transcriptional output differed dramatically among cell lines further supporting a cell context-specific role of NSD2 EK. These results demonstrate a unique role of NSD2 EK in mediating clonal fitness through pleiotropic mechanisms dependent on the genetic and epigenetic landscape. IMPLICATIONS: NSD2 EK mutation leads to drug resistance and a clonal advantage in childhood B-ALL.
Collapse
Affiliation(s)
- Joanna Pierro
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York.,Division of Pediatric Hematology/Oncology, Hassenfeld Children's Hospital at NYU Langone Health, New York, New York
| | - Jason Saliba
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Sonali Narang
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Gunjan Sethia
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Shella Saint Fleur-Lominy
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York.,Division of Medical Hematology/Oncology, NYU Langone Health, New York, New York
| | - Ashfiyah Chowdhury
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Anita Qualls
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Hannah Fay
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Harrison L Kilberg
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tori J Fuller
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and The Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California
| | - Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jinghui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aristotelis Tsirigos
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Nikki A Evensen
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - William L Carroll
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York. .,Division of Pediatric Hematology/Oncology, Hassenfeld Children's Hospital at NYU Langone Health, New York, New York
| |
Collapse
|
9
|
|