1
|
Pompon D, Garcia-Alles LF, Urban P. Geometry-encoded molecular dynamics enables deep learning insights into P450 regiospecificity control. Sci Rep 2025; 15:7512. [PMID: 40032954 PMCID: PMC11876329 DOI: 10.1038/s41598-025-91155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Cytochrome P450 1A2, as many isoenzymes, can generate multiple metabolites from a single substrate. A loose coupling between substrate binding and oxygen activation makes possible substrate reorientations at the active site prior to catalysis. In the present work, caffeine oxidation to alternative bioactive compounds was used to decipher this pluripotency. A model involving two interacting subsites capable of sequentially accommodating one or two caffeine molecules was considered. Molecular dynamics was used to characterize subsite interactions and feed a dedicated geometric encoding of trajectories that was coupled to dimensional reductions and differential machine learning. The two subsites differentially control caffeine orientations and can exchange substrate through a phenylalanine gated mechanism. This exchange can be locked by the presence of a second bound molecule. Complementary roles of subsites in progressively determining the caffeine orientation during its approach to active oxygen were examined. Interestingly, substrate face flipping becomes impaired upon entry into the rather flat active site. This makes the mechanisms that define the orientation of caffeine relative to active oxygen dependent on the substrate face oriented toward heme. Globally, this evidenced that P450 1A2 regioselectivity results from local determinants combined with subsite interactions and caffeine face preselection at a longer distance.
Collapse
Affiliation(s)
- Denis Pompon
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, Toulouse, France.
| | - Luis F Garcia-Alles
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, Toulouse, France
| | - Philippe Urban
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, Toulouse, France
| |
Collapse
|
2
|
Vitas M, Dobovišek A. A possible origin of life in nonpolar environments. Biosystems 2025; 247:105384. [PMID: 39725061 DOI: 10.1016/j.biosystems.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Explaining the emergence of life is perhaps the central and most challenging question in modern science. We are proposing a new hypothesis concerning the origins of life. The new hypothesis is based on the assumption that during the emergence of life, evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity. Additionally, the key abiotic and early biotic molecules required in the formation of early life, like cofactors, coenzymes, nucleic bases, prosthetic groups, polycyclic aromatic hydrocarbons (PAHs), some pigments, etc. are poorly soluble in aqueous media. To avoid the latter concentration problem, the new hypothesis assumes that life could have emerged in the nonpolar environments or low water systems, or at the interphase of the nonpolar and polar water phase, from where it was subsequently transferred to the aqueous environment. To support our hypothesis, we assume that hydrocarbons and oil on the Earth have abiotic origins.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
3
|
Koroleva PI, Bulko TV, Agafonova LE, Shumyantseva VV. Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1645-1657. [PMID: 38105030 DOI: 10.1134/s0006297923100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 12/19/2023]
Abstract
Cytochromes P450 are a unique family of enzymes found in all Kingdoms of living organisms (animals, bacteria, plants, fungi, and archaea), whose main function is biotransformation of exogenous and endogenous compounds. The review discusses approaches to enhancing the efficiency of electrocatalysis by cytochromes P450 for their use in biotechnology and design of biosensors and describes main methods in the development of reconstituted and electrochemical catalytic systems based on the biochemical mechanism of cytochromes P450, as well as and modern trends for their practical application.
Collapse
Affiliation(s)
| | | | | | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
4
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
6
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
8
|
Pardhe BD, Do H, Jeong CS, Kim KH, Lee JH, Oh TJ. Characterization of high-H 2O 2-tolerant bacterial cytochrome P450 CYP105D18: insights into papaverine N-oxidation. IUCRJ 2021; 8:684-694. [PMID: 34258016 PMCID: PMC8256718 DOI: 10.1107/s2052252521005522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The bacterial CYP105 family is involved in secondary metabolite biosynthetic pathways and plays essential roles in the biotransformation of xenobiotics. This study investigates the newly identified H2O2-mediated CYP105D18 from Streptomyces laurentii as the first bacterial CYP for N-oxidation. The catalytic efficiency of CYP105D18 for papaverine N-oxidation was 1.43 s-1 µM -1. The heme oxidation rate (k) was low (<0.3 min-1) in the presence of 200 mM H2O2. This high H2O2 tolerance capacity of CYP105D18 led to higher turnover prior to heme oxidation. Additionally, the high-resolution papaverine complexed structure and substrate-free structure of CYP105D18 were determined. Structural analysis and activity assay results revealed that CYP105D18 had a strong substrate preference for papaverine because of its bendable structure. These findings establish a basis for biotechnological applications of CYP105D18 in the pharmaceutical and medicinal industries.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Chang-Sook Jeong
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
9
|
Structural Basis for the Diminished Ligand Binding and Catalytic Ability of Human Fetal-Specific CYP3A7. Int J Mol Sci 2021; 22:ijms22115831. [PMID: 34072457 PMCID: PMC8198134 DOI: 10.3390/ijms22115831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 3A7 (CYP3A7) is a fetal/neonatal liver enzyme that participates in estriol synthesis, clearance of all-trans retinoic acid, and xenobiotic metabolism. Compared to the closely related major drug-metabolizing enzyme in adult liver, CYP3A4, the ligand binding and catalytic capacity of CYP3A7 are substantially reduced. To better understand the structural basis for these functional differences, the 2.15 Å crystal structure of CYP3A7 has been solved. Comparative analysis of CYP3A enzymes shows that decreased structural plasticity rather than the active site microenvironment defines the ligand binding ability of CYP3A7. In particular, a rotameric switch in the gatekeeping amino acid F304 triggers local and long-range rearrangements that transmit to the F-G fragment and alter its interactions with the I-E-D-helical core, resulting in a more rigid structure. Elongation of the β3-β4 strands, H-bond linkage in the substrate channel, and steric constraints in the C-terminal loop further increase the active site rigidity and limit conformational ensemble. Collectively, these structural distinctions lower protein plasticity and change the heme environment, which, in turn, could impede the spin-state transition essential for optimal reactivity and oxidation of substrates.
Collapse
|