1
|
Li Y, Zhang Z, Jiang S, Xu F, Tulum L, Li K, Liu S, Li S, Chang L, Liddell M, Tu F, Gu X, Carmichael PL, White A, Peng S, Zhang Q, Li J, Zuo T, Kukic P, Xu P. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. CHEMOSPHERE 2023; 313:137359. [PMID: 36427571 DOI: 10.1016/j.chemosphere.2022.137359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Songhao Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feng Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Liz Tulum
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Kaixuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Fengjuan Tu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Xuelan Gu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Paul Lawford Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Tao Zuo
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China.
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - Ping Xu
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Kim SD, Morgan L, Hargreaves E, Zhang X, Jiang Z, Antenos M, Li B, Kirby GM. Regulation of Cytochrome P450 2a5 by Artemisia capillaris and 6,7-Dimethylesculetin in Mouse Hepatocytes. Front Pharmacol 2021; 12:730416. [PMID: 34880749 PMCID: PMC8645941 DOI: 10.3389/fphar.2021.730416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Jaundice is a potentially fatal condition resulting from elevated serum bilirubin levels. For centuries, herbal remedies containing Artemisia capillaris Thunb. including the compound 6,7-dimethylesculetin (DE) have been used in Asia to prevent and treat jaundice in neonates. DE activates an important regulator of bilirubin metabolism, the constitutive androstane receptor (CAR), and increases bilirubin clearance. In addition, murine cytochrome P450 2a5 (Cyp2a5) is known to be involved in the oxidative metabolism of bilirubin. Moreover, treatment of mice with phenobarbital, a known inducer of both CAR and Cyp2a5, increases expression of Cyp2a5 suggesting a potential relationship between CAR and Cyp2a5 expression. The aim of this study is to investigate the influence of Artemisia capillaris and DE on the expression and regulatory control of Cyp2a5 and the potential involvement of CAR. Treatment of mouse hepatocytes in primary culture with DE (50 μM) significant increased Cyp2a5 mRNA and protein levels. In mice, Artemisia capillaris and DE treatment also increased levels of hepatic Cyp2a5 protein. Luciferase reporter assays showed that CAR increases Cyp2a5 gene transcription through a CAR response element in the Cyp2a5 gene promoter. Moreover, DE caused nuclear translocation of CAR in primary mouse hepatocytes and increased Cyp2a5 transcription in the presence of CAR. These results identify a potential CAR-mediated mechanism by which DE regulates Cyp2a5 gene expression and suggests that DE may enhance bilirubin clearance by increasing Cyp2a5 levels. Understanding this process could provide an opportunity for the development of novel therapies for neonatal and other forms of jaundice.
Collapse
Affiliation(s)
- Sangsoo Daniel Kim
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Larry Morgan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Elyse Hargreaves
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Xiaoying Zhang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhihui Jiang
- He'nan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Monica Antenos
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ben Li
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Gordon M Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Popescu RG, Bulgaru C, Untea A, Vlassa M, Filip M, Hermenean A, Marin D, Țăranu I, Georgescu SE, Dinischiotu A. The Effectiveness of Dietary Byproduct Antioxidants on Induced CYP Genes Expression and Histological Alteration in Piglets Liver and Kidney Fed with Aflatoxin B1 and Ochratoxin A. Toxins (Basel) 2021; 13:148. [PMID: 33671978 PMCID: PMC7919288 DOI: 10.3390/toxins13020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the potential of a byproduct mixture derived from grapeseed and sea buckthorn oil industry to mitigate the harmful damage produced by ochratoxin A and aflatoxin B1 at hepatic and renal level in piglets after weaning. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three experimental groups (E1, E2, E3) and one control group (C), and fed with experimental diets for 30 days. The basal diet was served as a control and contained normal compound feed for starter piglets without mycotoxins. The experimental groups were fed as follows: E1-basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal); E2-the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1); and E3-basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform gene expression and histological analysis. The gene expression analysis showed that when weaned piglets were fed with contaminated diet, the expression of most analyzed genes was downregulated. Among the CYP450 family, CYP1A2 was the gene with the highest downregulation. According to these results, in liver, we found that mycotoxins induced histomorphological alterations in liver and kidney and had an effect on the expression level of CYP1A2, CYP2A19, CYP2E1, and CYP3A29, but we did not detect important changes in the expression level of CY4A24, MRP2 and GSTA1 genes.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Arabela Untea
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Daniela Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| |
Collapse
|
4
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Kao TL, Chen YL, Kuan YP, Chang WC, Ho YC, Yeh S, Jeng LB, Ma WL. Estrogen-Estrogen Receptor α Signaling Facilitates Bilirubin Metabolism in Regenerating Liver Through Regulating Cytochrome P450 2A6 Expression. Cell Transplant 2018; 26:1822-1829. [PMID: 29338386 PMCID: PMC5784527 DOI: 10.1177/0963689717738258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND After living donor liver transplantation (LDLT), rising serum bilirubin levels commonly indicate insufficient numbers of hepatocytes are available to metabolize bilirubin into biliverdin. Recovery of bilirubin levels is an important marker of hepatocyte repopulation after LDLT. Cytochrome P450 (CYP) 2A6 in humans (or cyp2a4 in rodents) can function as "bilirubin oxidase." Functional hepatocytes contain abundant CYP2A6, which is considered a marker for hepatocyte function recovery. The aim of our study was to determine the impact of estradiol/estrogen receptor signaling on bilirubin levels during liver function recovery. METHODS We conducted a hospital-based cohort study of bilirubin levels after LDLT surgery in both liver graft donors and recipients, performed a transcriptome comparison of wild-type versus estrogen receptor (ER)α knockout mice and a bioinformatics analysis of transcriptome changes in their regenerating liver after two-third partial hepatectomy (PHx), and assayed in vitro expression of cytochrome (CYP2A6) in human hepatic progenitor cells (HepRG) treated with 17β-estradiol (E2). RESULTS The latency of bilirubin level reduction was shorter in women than in men, suggesting that a female factor promotes bilirubin recovery after liver transplantation surgery. In the PHx mouse model, the expression of the cyp2a4 gene was significantly lower in livers from the knockout ERα mice than in livers from their wild-type littermates; but the expression of other bilirubin metabolism-related genes were similar between these groups. Moreover, E2 or bilirubin treatments significantly promoted CYP2A6 expression in hepatocyte progenitor cells (HepRG cells). Sequence analysis revealed similar levels of aryl hydrocarbon receptor (AhR; bilirubin responsive nuclear receptor) and ESR1 binding to the promoter region of CYP2A6. CONCLUSIONS This is the first report to demonstrate, on a molecular level, that E2/ERα signaling facilitates bilirubin metabolism in regenerating liver. Our findings contribute new knowledge to our understanding of why the latency of improved bilirubin metabolism and thereby liver function recovery is shorter in females than in males.
Collapse
Affiliation(s)
- Ta-Lun Kao
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,2 Department of Trauma and Critical Care, Changhua Christian Hospital, Changhua, Taiwan
| | - Yao-Li Chen
- 3 Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Ping Kuan
- 4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Chang
- 4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Ho
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Shuyuan Yeh
- 5 Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Long-Bin Jeng
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,6 Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Zhang B, Madden P, Gu J, Xing X, Sankar S, Flynn J, Kroll K, Wang T. Uncovering the transcriptomic and epigenomic landscape of nicotinic receptor genes in non-neuronal tissues. BMC Genomics 2017; 18:439. [PMID: 28583088 PMCID: PMC5460472 DOI: 10.1186/s12864-017-3813-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/23/2017] [Indexed: 02/17/2023] Open
Abstract
Background Nicotinic acetylcholine receptors (nAChRs) play an important role in cellular physiology and human nicotine dependence, and are closely associated with many human diseases including cancer. For example, previous studies suggest that nAChRs can re-wire gene regulatory networks in lung cancer cell lines. However, the tissue specificity of nAChRs genes and their regulation remain unexplored. Result In this study, we integrated data from multiple large genomic consortiums, including ENCODE, Roadmap Epigenomics, GTEx, and FANTOM, to define the transcriptomic and epigenomic landscape of all nicotinic receptor genes across many different human tissues and cell types. We found that many important nAChRs, including CHRNA3, CHRNA4, CHRNA5, and CHRNB4, exhibited strong non-neuronal tissue-specific expression patterns. CHRNA3, CHRNA5, and CHRNB4 were highly expressed in human colon and small intestine, and CHRNA4 was highly expressed in human liver. By comparing the epigenetic marks of CHRNA4 in human liver and hippocampus, we identified a novel liver-specific transcription start site (TSS) of CHRNA4. We further demonstrated that CHRNA4 was specifically transcribed in hepatocytes but not transcribed in hepatic sinusoids and stellate cells, and that transcription factors HNF4A and RXRA were likely upstream regulators of CHRNA4. Our findings suggest that CHRNA4 has distinct transcriptional regulatory mechanisms in human liver and brain, and that this tissue-specific expression pattern is evolutionarily conserved in mouse. Finally, we found that liver-specific CHRNA4 transcription was highly correlated with genes involved in the nicotine metabolism, including CYP2A6, UGT2B7, and FMO3. These genes were significantly down-regulated in liver cancer patients, whereas CHRNA4 is also significantly down-regulated in cancer-matched normal livers. Conclusions Our results suggest important non-neuronally expressed nicotinic acetylcholine receptors in the human body. These non-neuronal expression patterns are highly tissue-specific, and are epigenetically conserved during evolution in the context of non-conserved DNA sequence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3813-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA. .,Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA.
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junchen Gu
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Savita Sankar
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Jennifer Flynn
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Kristen Kroll
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Ting Wang
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Tanner JA, Henderson JA, Buchwald D, Howard BV, Henderson PN, Tyndale RF. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet Genomics 2017; 27:169-178. [PMID: 28181923 PMCID: PMC5382092 DOI: 10.1097/fpc.0000000000000271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The Northern Plains (NP) and Southwest (SW) American Indian populations differ in their smoking patterns and lung cancer incidence. We aimed to compare CYP2A6 genetic variation and CYP2A6 enzyme activity (representative of the rate of nicotine metabolism) between the two tribal populations as these have previously been associated with differences in smoking, quitting, and lung cancer risk. PARTICIPANTS AND METHODS American Indians (N=636) were recruited from two different tribal populations (NP in South Dakota, SW in Arizona) as part of a study carried out as part of the Collaborative to Improve Native Cancer Outcomes P50 Project. A questionnaire assessed smoking-related traits and demographics. Participants were genotyped for CYP2A6 genetic variants *1B, *2, *4, *7, *9, *12, *17, and *35. Plasma and/or saliva samples were used to measure nicotine's metabolites cotinine and 3'-hydroxycotinine and determine CYP2A6 activity (3'-hydroxycotinine/cotinine, i.e. the nicotine metabolite ratio, NMR). RESULTS The overall frequency of genetically reduced nicotine metabolizers, those with CYP2A6 decrease-of-function or loss-of-function alleles, was lower in the NP compared with the SW (P=0.0006). The CYP2A6 genotype was associated with NMR in both tribal groups (NP, P<0.0001; SW, P=0.04). Notably, the rate of nicotine metabolism was higher in NP compared with SW smokers (P=0.03), and in comparison with other ethnic groups in the USA. Of the variables studied, the CYP2A6 genotype was the only variable to significantly independently influence NMR among smokers in both tribal populations (NP, P<0.001; SW, P=0.05). CONCLUSION Unique CYP2A6 allelic patterns and rates of nicotine metabolism among these American Indian populations suggest different risks for smoking, and tobacco-related disease.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Dedra Buchwald
- Elson S. Floyd College of Medicine, Initiative for Research and Education to Advance Community Health (IREACH), Washington State University, Seattle, Washington
| | - Barbara V. Howard
- MedStar Health Research Institute, Hyattsville, Maryland; the Georgetown-Howard Universities Center for Clinical and Translational Sciences, Washington, District of Columbia
| | | | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
9
|
Hu H, Yu T, Arpiainen S, Lang MA, Hakkola J, Abu-Bakar A. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6. Toxicol Appl Pharmacol 2015; 289:30-9. [PMID: 26343999 DOI: 10.1016/j.taap.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6.
Collapse
Affiliation(s)
- Hao Hu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Ting Yu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Satu Arpiainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Matti A Lang
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Jukka Hakkola
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - A'edah Abu-Bakar
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Pang C, Liu JH, Xu YS, Chen C, Dai PG. The allele frequency of CYP2A6*4 in four ethnic groups of China. Exp Mol Pathol 2015; 98:546-8. [PMID: 25862079 DOI: 10.1016/j.yexmp.2015.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/22/2015] [Accepted: 03/27/2015] [Indexed: 11/24/2022]
Abstract
The CYP2A6*4 allele, characterized as the whole deletion of this gene, is closely associated with nicotine dependence, cancer susceptibility, and drug responsiveness. The frequency of this molecular variant differs across populations. Although genetic polymorphisms of CYP2A6*4 and its functional results have been reported in Chinese Han population, the allele frequency of CYP2A6*4 was largely unknown in other Chinese ethnic population. In this study, we investigated the allele frequency of CYP2A6*4 in four main ethnic groups of China based on our newly developed quantitative real-time PCR assay. The frequencies of the CYP2A6*4 allele were 7.9%, 15%, 0% and 2% in Han (N=120), Uighur (N=100), Bouyei (N=100) and Tibetan (N=100) (P<0.0001), respectively. This work greatly expanded our understanding of the distribution of CYP2A6*4 in Chinese population and provided more information of different ethnic population's smoking behavior and also in disease susceptibility and drug response.
Collapse
Affiliation(s)
- Cong Pang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, PR China
| | - Jin-Hui Liu
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, PR China
| | - Yi-Song Xu
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, PR China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, PR China
| | - Peng-Gao Dai
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, PR China.
| |
Collapse
|
11
|
Yang Q, Tang S, Dong L, Chen Q, Liu X, Jiang J, Deng Y. Transcriptional regulation of chicken cytochrome P450 2D49 basal expression by CCAAT/enhancer-binding protein α and hepatocyte nuclear factor 4α. FEBS J 2014; 281:1379-1392. [PMID: 24418194 DOI: 10.1111/febs.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/03/2013] [Accepted: 01/04/2014] [Indexed: 01/06/2023]
Abstract
Chicken cytochrome P450 (CYP)2D49 is structurally and functionally related to human CYP2D6, which is an important drug-metabolizing enzyme. To date, little is known about the transcriptional regulation of this cytochrome. Through deletion analysis of the CYP2D49 promoter, we identified two putative degenerate CCAAT/enhancer-binding protein (C/EBP)-binding sites and an imperfect DR1 element (the site contains direct repeats of the hexamer AGGTCA separated by a one-nucleotide spacer motif) within regions -296/-274, -274/-226, and -226/-183, respectively, which may play critical roles in the transcriptional activation of the CYP2D49 gene. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the putative C/EBP boxes and DR1 element in the CYP2D49 promoter are functional motifs that bind to C/EBPα and hepatocyte nuclear factor 4α (HNF4α), respectively. Furthermore, we studied the functional importance and relationships of these transcription factor-binding sites by examining the effects of mutation and deletion of these regions on promoter activity. These studies revealed that the two C/EBP-binding sites show a compensatory relationship and work cooperatively with the DR1 element to modulate the transcription of CYP2D49. The results of overexpressing C/EBPα and HNF4α in culture cells further confirmed that both C/EBPα and HNF4α contribute significantly to sustaining a high level of CYP2D49 transcription. In conclusion, the data indicate that the constitutive hepatic expression of CYP2D49 is governed by both C/EBPα and HNF4α. Further studies will be required to fully characterize the molecular mechanisms that modulate CYP2D49 expression.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Rowe C, Gerrard DT, Jenkins R, Berry A, Durkin K, Sundstrom L, Goldring CE, Park BK, Kitteringham NR, Hanley KP, Hanley NA. Proteome-wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology 2013; 58:799-809. [PMID: 23526496 PMCID: PMC3842115 DOI: 10.1002/hep.26414] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/15/2013] [Indexed: 01/07/2023]
Abstract
UNLABELLED Failure to predict hepatotoxic drugs in preclinical testing makes it imperative to develop better liver models with a stable phenotype in culture. Stem cell-derived models offer promise, with differentiated hepatocyte-like cells currently considered to be "fetal-like" in their maturity. However, this judgment is based on limited biomarkers or transcripts and lacks the required proteomic datasets that directly compare fetal and adult hepatocytes. Here, we quantitatively compare the proteomes of human fetal liver, adult hepatocytes, and the HepG2 cell line. In addition, we investigate the proteome changes in human fetal and adult hepatocytes when cultured in a new air-liquid interface format compared to conventional submerged extracellular matrix sandwich culture. From albumin and urea secretion, and luciferase-based cytochrome P450 activity, adult hepatocytes were viable in either culture model over 2 weeks. The function of fetal cells was better maintained in the air-liquid interface system. Strikingly, the proteome was qualitatively similar across all samples but hierarchical clustering showed that each sample type had a distinct quantitative profile. HepG2 cells more closely resembled fetal than adult hepatocytes. Furthermore, clustering showed that primary adult hepatocytes cultured at the air-liquid interface retained a proteome that more closely mimicked their fresh counterparts than conventional culture, which acquired myofibroblast features. Principal component analysis extended these findings and identified a simple set of proteins, including cytochrome P450 2A6, glutathione S transferase P, and alcohol dehydrogenases as specialized indicators of hepatocyte differentiation. CONCLUSION Our quantitative datasets are the first that directly compare multiple human liver cells, define a model for enhanced maintenance of the hepatocyte proteome in culture, and provide a new protein "toolkit" for determining human hepatocyte maturity in cultured cells.
Collapse
Affiliation(s)
- Cliff Rowe
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, AV Hill Building, Manchester Academic Health Science Centre, University of ManchesterOxford Road, Manchester, UK,Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington BuildingAshton Street, Liverpool, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK
| | - Dave T Gerrard
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, AV Hill Building, Manchester Academic Health Science Centre, University of ManchesterOxford Road, Manchester, UK,Bioinformatics, Faculty of Life Sciences, Michael Smith BuildingOxford Road, Manchester, UK
| | - Roz Jenkins
- Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington BuildingAshton Street, Liverpool, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK
| | - Andrew Berry
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, AV Hill Building, Manchester Academic Health Science Centre, University of ManchesterOxford Road, Manchester, UK
| | - Kesta Durkin
- Human Genetics Division, University of SouthamptonTremona Road, Southampton, UK
| | - Lars Sundstrom
- SARTRE, School of Clinical Sciences, University of BristolBristol, UK
| | - Chris E Goldring
- Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington BuildingAshton Street, Liverpool, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK
| | - B Kevin Park
- Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington BuildingAshton Street, Liverpool, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK
| | - Neil R Kitteringham
- Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington BuildingAshton Street, Liverpool, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK
| | - Karen Piper Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, AV Hill Building, Manchester Academic Health Science Centre, University of ManchesterOxford Road, Manchester, UK
| | - Neil A Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, AV Hill Building, Manchester Academic Health Science Centre, University of ManchesterOxford Road, Manchester, UK,MRC Centre for Drug Safety Science, University of Liverpool and University of ManchesterUK,Department of Endocrinology, Central Manchester University Hospitals NHS Foundation TrustOxford Road, Manchester, UK,Address reprint requests to: Professor Neil Hanley, AV Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. E-mail: ; fax: +44 (0)161 275 5958
| |
Collapse
|
13
|
Tanii H, Shitara Y, Torii M, Sekine S, Iwata H, Horie T. Induction of Cytochrome P450 2A6 by Bilirubin in Human Hepatocytes. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.42026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Chew SC, Lim JSL, Lee EJD, Chowbay B. Genetic variations of NR2A1 in Asian populations: implications in pharmacogenetics studies. Drug Metab Pharmacokinet 2012; 28:278-88. [PMID: 23268925 DOI: 10.2133/dmpk.dmpk-12-sh-114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HNF4α (encoded by gene NR2A1) is a dominant transcriptional regulator of various drug disposition genes. It forms a circuitry of molecular cross-talk with other nuclear receptors such as PXR and CAR to synergistically initiate transcription. This study reports on the frequency, linkage disequilibrium pattern and tag-SNP selection of NR2A1 polymorphisms in three local Asian populations, namely Chinese, Malays and Indians (n = 56 subjects each). A total of 69 polymorphisms were identified in the genomic region of NR2A1, of which thirty-three were novel polymorphisms with low allelic frequencies (<0.02). The exonic region of NR2A1 was highly conserved with only 4 novel and 1 reported SNPs identified at low allelic frequencies of less than 0.02. Based on the criteria of MAF ≥ 0.05 and R(2) ≥ 0.80, there were 19, 20 and 22 tag-SNPs selected to represent the genetic polymorphisms of NR2A1 in Chinese, Malays and Indians, respectively. In-silico predictions suggested that some of these polymorphic variants may exert functional effects through affecting the binding sites of transcription and splicing factors. Our study provides valuable information on the genetic variability of NR2A1 which would be useful for pharmacogenetics studies in the local Asian populations.
Collapse
Affiliation(s)
- Sin Chi Chew
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | | | | | | |
Collapse
|
15
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Pretheeban M, Hammond G, Bandiera S, Riggs W, Rurak D. Ontogenesis of phase I hepatic drug metabolic enzymes in sheep. Reprod Fertil Dev 2012; 24:425-37. [DOI: 10.1071/rd11159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/05/2011] [Indexed: 12/23/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are important for the metabolism of many drugs. While there is information on their identity and ontogeny in humans and rodents, similar data in sheep are lacking. In the present study, cDNA sequences of several CYP enzymes (CYP2A6, CYP2C19, CYP2D6) were cloned by rapid amplification of cDNA ends. In adult, newborn and fetal sheep the mRNA and protein levels of these CYPs and the regulatory factor, hepatic nuclear factor 4α (HNF4α) were determined in liver samples using real-time PCR and western blotting. The effect of antenatal glucocorticoid on these enzymes was also studied by i.v. infusion of cortisol (0.45 mg h–1; 80 h) to another group of fetuses. The mRNA and protein levels of the CYPs and HNF4α were low or absent in the fetus, followed by increasing levels in the newborn and adult. Fetal cortisol administration significantly increased the mRNA and protein levels of CYP2D6. Moreover, the correlation observed between the CYP and HNF4α mRNA levels suggests a possible regulatory role for this transcription factor. The findings suggest that fetal and newborn lambs have a low ability to metabolise drugs that are substrates of these enzymes, and that this ability increases with advancing postnatal age, similar to the situation in humans.
Collapse
|
17
|
Med25 is required for RNA polymerase II recruitment to specific promoters, thus regulating xenobiotic and lipid metabolism in human liver. Mol Cell Biol 2010; 31:466-81. [PMID: 21135126 DOI: 10.1128/mcb.00847-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of many critical metabolic pathways, and the Mediator complex occupies a central role in recruiting RNA polymerase II (Pol II) to these gene promoters. An impaired transcriptional HNF4α network in human liver is responsible for many pathological conditions, such as altered drug metabolism, fatty liver, and diabetes. Here, we report that Med25, an associated member of the Mediator complex, is required for the association of HNF4α with Mediator, its several cofactors, and RNA Pol II. Further, increases and decreases in endogenous Med25 levels are reflected in the composition of the transcriptional complex, Pol II recruitment, and the expression of HNF4α-bound target genes. A novel feature of Med25 is that it imparts "selectivity." Med25 affects only a significant subset of HNF4α target genes that selectively regulate drug and lipid metabolism. These results define a role for Med25 and the Mediator complex in the regulation of xenobiotic metabolism and lipid homeostasis.
Collapse
|
18
|
Zhang C, Luo X, Ni X, Zhang Y, Li X. Functional characterization of cis-acting elements mediating flavone-inducible expression of CYP321A1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:898-908. [PMID: 20854909 DOI: 10.1016/j.ibmb.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
How plant allelochemicals elicit herbivore counterdefense genes remains largely unknown. To define the cis-acting elements for flavone inducibility of the allelochemical-metabolizing CYP321A1 from Helicoverpa zea, functions of varying length of CYP321A1 promoter are examined in H. zea fatbody cells. Progressive 3' deletions reveal presence of positive elements in the 5' untranslated region (UTR). Progressive 5' deletions map out regions of one essential element, four enhancers, and two silencers. Further progressive 5'deletions localize the essential element to a 36-bp region from -109 to -74. This essential element, designated as xenobiotic response element to flavone (XRE-Fla), contains a 5' AT-only TAAT inverted repeat, a GCT mirror repeat and a 3' antioxidant response element-like element. Internal deletions and substitution mutations show that the TAAT repeat is only necessary for the maximal flavone inducibility, whereas the other two components are necessary for the basal and flavone-induced expression of CYP321A1. Electrophoresis mobility shift assays demonstrate that XRE-Fla specifically binds to H. zea fatbody cell nuclear extracts and flavone treatment increases the nuclear concentrations of the yet-to-be characterized transcription factors binding to XRE-Fla. Taken together, CYP321A1 expression is regulated primarily by XRE-Fla and secondarily by other cis elements scattered in its promoter and 5' UTR.
Collapse
Affiliation(s)
- Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
19
|
Yusof W, Gan SH. High prevalence of CYP2A6⁎4 and CYP2A6⁎9 alleles detected among a Malaysian population. Clin Chim Acta 2009; 403:105-9. [DOI: 10.1016/j.cca.2009.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
|
20
|
Abstract
The molecular genetics of nicotine metabolism involves multiple polymorphic catalytic enzymes. Variation in metabolic pathways results in nicotine disposition kinetics that differ between individuals and ethnic groups. Twin studies indicate that a large part of this variance is genetic in origin, although environmental influences also contribute. The primary aim of this chapter is to review the current knowledge regarding the genetic variability in the enzymes that metabolize nicotine in humans. The focus is on describing the genetic polymorphisms that exist in cytochromes P450 (CYPs), aldehyde oxidase 1 (AOX1), UDP-glucuronosyltransferases (UGTs), and flavin-containing monooxygenase 3 (FMO3). Genetic studies have demonstrated that polymorphisms in CYP2A6, the primary enzyme responsible for nicotine breakdown, make a sizable contribution to the wide range of nicotine metabolic capacity observed in humans. Thus, special attention will be given to CYP2A6, because slower nicotine metabolism requires less frequent self-administration, and accordingly influences smoking behaviors. In addition, the molecular genetics of nicotine metabolism in nonhuman primates, mice, and rats will be reviewed briefly.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- Centre for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Watanabe N, Tsukada E, Ohhata Y, Kobayashi K, Satoh T, Chiba K. Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab Pharmacokinet 2008; 23:73-84. [PMID: 18305377 DOI: 10.2133/dmpk.23.73] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian carboxylesterases comprise a multigene family, the gene products of which are localized in the endoplasmic reticulum. The carboxylesterases catalyze the hydrolysis of various xenobiotics and endogenous substrates such as ester, amide and thioester bonds and are thought to function mainly in drug metabolism. We have suggested the possibility that individual variation of human liver carboxylesterase activity causes the difference in expression levels of CES1A isozymes. However, little is known about the transcriptional regulation of human carboxylesterase genes. In the present study, we isolated two CES genes encoding human carboxylesterase CES1A, which were designated as CES1A1 (AB119997) and CES1A2 (AB119998). These genes were identical except for exon 1 and the 5' regulatory element. We investigated the transcriptional regulation of these two CES genes. A reporter gene assay and electrophoretic mobility shift assay demonstrated that Sp1 and C/EBPalpha could bind to each responsive element of the CES1A1 promoter but that the Sp1 and C/EBP could not bind to the responsive element of the CES1A2 promoter. Thus, CES1A1 mRNA expression level is much higher than the expression level of CES1A2 mRNA in the liver and lung. It is thought that these results provide information on individual variation of human carboxylesterase isozymes.
Collapse
Affiliation(s)
- Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Sciences, Choshi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gonzalez FJ. Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet 2008; 23:2-7. [PMID: 18305369 DOI: 10.2133/dmpk.23.2] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) is required for development of the liver and for controlling the expression of many genes specifically expressed in the liver and associated with a number of critical metabolic pathways. Among the genes regulated by HNF4alpha are the xenobiotic-metabolizing cytochromes P450, UDP-glucuronosyltransferases and sulfotransferases thus making this transcription factor critical in the control of drug metabolism. HNF4alpha, a member of the nuclear receptor superfamily, binds as a homodimer to direct repeat elements upstream of target genes. However, in contrast to many other nuclear receptors, there is no convincing evidence that HNF4alpha is activated by exogenous ligands, at least in the classic mechanism used by other steroid and metabolic nuclear receptors. X-ray crystallographic studies revealed that HNF4alpha has a fatty acid embedded in its putative ligand binding site that may not be easily released or displaced by exogenous ligands. HNF4alpha, as a general rule, controls constitutive expression of many hepatic genes but under certain circumstances can be subjected to regulation by differential co-activator recruitment, by phosphorylation and by interaction with other nuclear receptors. The ability of HNF4alpha to be regulated offers hope that it could be a drug target.
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Instituted of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
23
|
Iwazaki N, Kobayashi K, Morimoto K, Hirano M, Kawashima S, Furihata T, Chiba K. Involvement of hepatocyte nuclear factor 4 alpha in transcriptional regulation of the human pregnane X receptor gene in the human liver. Drug Metab Pharmacokinet 2008; 23:59-66. [PMID: 18305375 DOI: 10.2133/dmpk.23.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR; NR1I2), a key transcriptional factor that regulates genes encoding drug-metabolizing enzymes and drug transporters, is abundantly expressed in the human liver. However, studies on the molecular mechanism of human PXR gene regulation are limited. In this study, we examined the involvement of hepatocyte nuclear factor 4alpha (HNF4alpha; NR2A1) in the transcriptional regulation of the human PXR gene in the human liver. The activities of the human PXR promoter containing the direct repeat 1 (DR1) element located at -88/-76 of the promoter were significantly increased by co-expression of HNF4alpha in the human hepatocellular carcinoma cell line. In addition, introduction of mutation into the DR1 element abolished the transcriptional activation of the human PXR promoter by exogenous HNF4alpha. The results of gel mobility shift assays and chromatin immunoprecipitation assays showed that HNF4alpha was bound to the promoter region containing the DR1 element. A knock-down of HNF4alpha by siRNA significantly decreased expression levels of endogenous PXR mRNA in HepG2 cells. Furthermore, expression levels of PXR mRNA positively correlated with those of HNF4alpha mRNA in 18 human liver samples. These results suggested that HNF4alpha transactivated the human PXR gene by binding to the DR1 element located at -88/-76 of the promoter and was involved in the expression of PXR in the human liver.
Collapse
Affiliation(s)
- Norihiko Iwazaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Onica T, Nichols K, Larin M, Ng L, Maslen A, Dvorak Z, Pascussi JM, Vilarem MJ, Maurel P, Kirby GM. Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4 alpha to the proximal promoter. Mol Pharmacol 2008; 73:451-60. [PMID: 17978169 DOI: 10.1124/mol.107.039354] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 2A6 (CYP2A6) metabolizes various clinically relevant compounds, including nicotine- and tobacco-specific procarcinogens; however, transcriptional regulation of this gene is poorly understood. We investigated the role of the glucocorticoid receptor (GR) in transcriptional regulation of CYP2A6. Dexamethasone (DEX) increased CYP2A6 mRNA and protein levels in human hepatocytes in primary culture. This effect was attenuated by the GR receptor antagonist mifepristone (RU486; 17beta-hydroxy-11beta-[4-dimethylamino phenyl]-17alpha-[1-propynyl]estra-4,9-dien-3-one), suggesting that induction of CYP2A6 by DEX was mediated by the GR. In gene reporter assays, DEX caused dose-dependent increases in luciferase activity that was also prevented by RU486 and progressive truncations of the CYP2A6 promoter delineated DEX-responsiveness to a -95 to +12 region containing an hepatic nuclear factor 4 (HNF4) alpha response element (HNF4-RE). Mutation of the HNF4-RE abrogated HNF4alpha- and DEX-mediated transactivation of CYP2A6. In addition, overexpression of HNF4alpha increased CYP2A6 transcriptional activity by 3-fold. DEX increased HNF4alpha mRNA levels by 4-fold; however, the amount of HNF4alpha nuclear protein was unaltered. Electrophoretic mobility shift, chromatin immunoprecipitation (ChIP), and streptavidin DNA binding assays revealed that DEX increased binding of HNF4alpha to the HNF4-RE and that an interaction of GR and HNF4alpha occurred at this site. Moreover, ChIP assays indicated that histone H4 acetylation of the CYP2A6 proximal promoter chromatin was increased by DEX that may allow for increased binding of HNF4alpha to the HNF4-RE in human hepatocytes. These findings indicate that increased expression of CYP2A6 by DEX is mediated by the GR via a nonconventional transcriptional mechanism involving interaction of HNF4alpha with an HNF4-RE rather than a glucocorticoid response element.
Collapse
Affiliation(s)
- Tania Onica
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Siest G, Jeannesson E, Marteau JB, Samara A, Marie B, Pfister M, Visvikis-Siest S. Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metab Dispos 2008; 36:182-9. [PMID: 17940135 DOI: 10.1124/dmd.107.017228] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
We aimed to measure simultaneously the expression of drug-metabolizing enzymes (DME) and transcription factors (TF) with high importance in cardiovascular physiopathology in lymphocytes from healthy subjects. RNA was isolated from peripheral blood mononuclear cells (PBMC) of 20 subjects from the Stanislas Cohort. We used a microarray approach to measure 16 DME and 13 TF. Cytochromes P450 (P450s), including CYP2C19, CYP2C9, CYP2J2, CYP2D6, CYP1A1, CYP4F2, CYP4A11, CYP2E1, CYP11B2, CYP2C18, and CYP2A6, were expressed in all the subjects. CYP3A4 and CYP3A5 were not expressed. Glutathione S-transferases (GST) were expressed, but GSTM1 was seen only in some subjects. Pregnane X receptor (PXR), myocyte enhancer factor 2, vitamin D receptor, liver X receptor (LXR)-alpha, aryl hydrocarbon receptor (AHR), T-cell factor 7, constitutive androstane receptor, and aryl hydrocarbon receptor nuclear translocator (ARNT) were expressed in the majority of the subjects. Glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-gamma, and LXRbeta were expressed only in some individuals. PPARalpha mRNA was found in one subject only, and farnesoid X-activated receptor was not expressed. In addition, we found significant correlations between the expression of AHR, ARNT, and CYP1A1 and between PXR and P450 involved in leukotriene metabolism (CYP2C, CYP4F2, CYP4A11, CYP2J2, and CYP11B2). We describe here for the first time the presence of the majority of TF and DME in PBMC of healthy subjects without previous induction. The expression of these genes in lymphocytes could be a useful tool for further studying the physiological and pathological variations of DME and TF related to environment, to drug intake, and to cardiovascular metabolic cycles.
Collapse
Affiliation(s)
- Gérard Siest
- Equipe Institut National de la Santé et de la Recherche Médicale Génétique Cardiovasculaire CIC 9501, Faculté de Pharmacie, Université Henri Poincaré-Nancy I, Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez-Antona C, Niemi M, Backman JT, Kajosaari LI, Neuvonen PJ, Robledo M, Ingelman-Sundberg M. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. THE PHARMACOGENOMICS JOURNAL 2007; 8:268-77. [PMID: 17923851 DOI: 10.1038/sj.tpj.6500482] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450 2C8 (CYP2C8) plays a major role in the metabolism of therapeutically important drugs which exhibit large interindividual differences in their pharmacokinetics. In order to evaluate any genetic influence on this variation, a CYP2C8 phenotype-genotype evaluation was carried out in Caucasians. Two novel CYP2C8 haplotypes, named B and C with frequencies of 24 and 22% in Caucasians, respectively, were identified and caused a significantly increased and reduced paclitaxel 6alpha-hydroxylation, respectively, as evident from analyses of 49 human liver samples. In healthy white subjects, CYP2C8*3 and the two novel haplotypes significantly influenced repaglinide pharmacokinetics in SLCO1B1c.521T/C heterozygous individuals: haplotype B was associated with reduced and haplotype C with increased repaglinide AUC (0-infinity). Functional studies suggested -271C>A (CYP2C8*1B) as a causative SNP in haplotype B. In conclusion, two novel common CYP2C8 haplotypes were identified and significantly associated with altered rate of CYP2C8-dependent drug metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- C Rodríguez-Antona
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kamiyama Y, Matsubara T, Yoshinari K, Nagata K, Kamimura H, Yamazoe Y. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet 2007; 22:287-98. [PMID: 17827783 DOI: 10.2133/dmpk.22.287] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is an important transcription factor in hepatic gene expression. Here, we have investigated the role of HNF4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes using an adenovirus expressing human HNF4alpha-small interfering RNA (hHNF4alpha-siRNA). The hHNF4alpha-siRNA effectively reduced the mRNA and nuclear protein levels of hHNF4alpha in a concentration-dependent manner. The hHNF4alpha-siRNA also decreased the mRNA levels of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, UGT1A1, UGT1A9, SULT2A1, ABCB1, ABCB11, ABCC2, OATP1B1 and OCT1, as well as those of PXR and CAR. To discern the role of these nuclear receptors, we co-infected hepatocytes with hHNF4alpha-siRNA and PXR- or CAR-expressing adenovirus. The hHNF4alpha-siRNA-induced reductions of the enzyme and transporter mRNA levels were not restored except CYP2B6 mRNA levels, which were returned to the control level by overexpressing CAR. Furthermore, although hHNF4alpha-siRNA did not significantly affect the fold-induction of CYP2B6, CYP2C8, CYP2C9, or CYP3A4 mRNA levels following treatment with CYP inducers, the levels in hHNF4alpha-suppressed cells fell significantly compared to the control. These results suggest that HNF4alpha plays a dominant role in the expression of drug-metabolizing enzymes and transporters in human hepatocytes, and that HNF4alpha expression levels is a possible determinant for inter-individual variations in the expression of these enzymes and transporters.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ling G, Wei Y, Ding X. Transcriptional regulation of human CYP2A13 expression in the respiratory tract by CCAAT/enhancer binding protein and epigenetic modulation. Mol Pharmacol 2007; 71:807-16. [PMID: 17148654 DOI: 10.1124/mol.106.031104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2A13, which is highly active in the metabolic activation of tobacco-specific nitrosamines, is selectively expressed in the respiratory tract, in which it is believed to play an important role in chemical carcinogenesis. The aim of this study was to determine the basis for tissue-specific regulation of CYP2A13 gene expression. We have shown that expression of CYP2A3, the rat homolog of CYP2A13, is regulated by nuclear factor I (NFI) in a tissue-specific manner. In the present study, we found that the transcriptional regulation of human CYP2A13 gene involves CCAAT/enhancer binding protein (C/EBP) transcription factors instead of NFI. DNase I footprinting and gel-shift assays with human lung nuclear extract identified two DNA elements bound by C/EBP. Reporter gene assays using a 216-base pair CYP2A13 promoter fragment confirmed the activation of CYP2A13 by transfected C/EBP factors, and results from chromatin immunoprecipitation assays indicated that C/EBP is associated with CYP2A13 promoter in vivo in the olfactory mucosa of CYP2A13-transgenic mice. In NCI-H441 human lung cancer cells, we discovered that CYP2A13 expression can be induced by a combined treatment with 5-aza-2'-deoxycytosine, a DNA demethylation agent, and trichostatin, a histone deacetylation inhibitor. In 5-aza-2'-deoxycytosine/trichostatin-treated NCI-H441 cells, overexpression of C/EBPdelta, a lung-enriched C/EBP, led to additional increases in CYP2A13 expression, whereas C/EBPdelta knockdown by small interference RNA suppressed CYP2A13 expression, findings that confirm a role for C/EBP in CYP2A13 regulation. Our findings pave the way for further studies of the regulation of the CYP2A13 gene, particularly the gene's potential suppression by airway inflammation, and the role of epigenetic modulation in the gene's tissue-selective expression.
Collapse
Affiliation(s)
- Guoyu Ling
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
29
|
Kojima K, Nagata K, Matsubara T, Yamazoe Y. Broad but Distinct Role of Pregnane X Receptor on the Expression of Individual Cytochrome P450s in Human Hepatocytes. Drug Metab Pharmacokinet 2007; 22:276-86. [PMID: 17827782 DOI: 10.2133/dmpk.22.276] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, we have utilized a target selective human pregnane X receptor-siRNA (hPXR-siRNA)-adenovirus expression system to examine the contribution of hPXR on the gene regulation of drug-metabolizing P450s in human hepatocytes. Introduction of the hPXR-siRNA adenoviral vector reduced the level of PXR mRNA. After infection with Ad hPXR-siRNA, the basal and ligand-activated CYP2A6, CYP2C8, CYP3A4 and CYP3A5 mRNA levels were decreased significantly in dose-dependent manners, whereas CYP2B6, CYP2C9 and CYP2C19 mRNA levels were moderately influenced after infection with Ad hPXR-siRNA. These data suggest the distinct PXR influences on the regulation of these genes. The expression of CYP1A2 and CYP2D6 mRNA were not affected by the introduction of hPXR-siRNA, suggesting that PXR plays no functional role in the expression of either of these genes. This is the first report to compare simultaneously the relative contribution of hPXR on the expression of nine forms of P450 in primary cultured human hepatocytes. Mutual sharing among nuclear receptors of their binding cis-elements becomes clear now. Thus, the present method using the combination of adenovirus-mediated hPXR-siRNA expression and human hepatocytes may offer clear information on the relative role of nuclear receptors such as hPXR on the expression of drug metabolizing genes.
Collapse
Affiliation(s)
- Koki Kojima
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | | | | | | |
Collapse
|
30
|
Itoh M, Nakajima M, Higashi E, Yoshida R, Nagata K, Yamazoe Y, Yokoi T. Induction of human CYP2A6 is mediated by the pregnane X receptor with peroxisome proliferator-activated receptor-gamma coactivator 1alpha. J Pharmacol Exp Ther 2006; 319:693-702. [PMID: 16857725 DOI: 10.1124/jpet.106.107573] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CYP2A6 plays important roles in the metabolism of nicotine and some clinically used drugs. Interindividual variability in the CYP2A6 expression level in human liver might be caused by an inducible property, but the molecular mechanism of induction is unclear. Rifampicin, phenobarbital, and 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime, which are activators of pregnane X receptor (PXR) and constitutive androstane receptor (CAR), induced CYP2A6 mRNA in human hepatocytes. We identified three direct repeat separated by four nucleotides (DR4)-like elements at -6698, -5476, and -4618 in the CYP2A6 gene, to which PXR and CAR could bind after dimerization with retinoid X receptor (RXR)-alpha. In luciferase assays, overexpression of PXR or CAR could not activate the transcriptional activity of CYP2A6 promoter constructs (-6754 to -1) in HepG2 cells. Cotransfection of hepatocyte nuclear factor-4alpha did not affect the transcriptional activities in the absence or presence of PXR or CAR. Interestingly, cotransfection of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) as well as PXR significantly enhanced the transcriptional activity (3.9-fold of control). By the deletion of a possible suppresser region (-4533 to -185), the effects of PXR/PGC-1alpha on the transcriptional activity were increased (6.9-fold of control). Deletion or mutation analyses revealed that two DR4-like elements at -5476 and -4618 are essential for transactivation by PXR/PGC-1alpha. Chromatin immunoprecipitation assay revealed that PXR and PGC-1alpha bind to CYP2A6 chromatin. In conclusion, we found that CYP2A6 is induced via PXR and PGC-1alpha through the DR4-like element at the distal response region. This is the first study to report the molecular mechanism of the induction of CYP2A6.
Collapse
Affiliation(s)
- Masahiro Itoh
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kawashima S, Kobayashi K, Takama K, Higuchi T, Furihata T, Hosokawa M, Chiba K. Involvement of hepatocyte nuclear factor 4alpha in the different expression level between CYP2C9 and CYP2C19 in the human liver. Drug Metab Dispos 2006; 34:1012-8. [PMID: 16540586 DOI: 10.1124/dmd.106.009365] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2C9 and CYP2C19 are clinically important drug-metabolizing enzymes. The expression level of CYP2C9 is much higher than that of CYP2C19, although the factor(s) responsible for the difference between the expression levels of these genes is still unclear. It has been reported that hepatocyte nuclear factor 4alpha (HNF4alpha) plays an important role in regulation of the expression of liver-enriched genes, including P450 genes. Thus, we hypothesized that HNF4alpha contributes to the difference between the expression levels of these genes. Two direct repeat 1 (DR1) elements were located in both the CYP2C9 and CYP2C19 promoters. The upstream and downstream elements in these promoters had the same sequences, and HNF4alpha could bind to both elements in vitro. The transactivation levels of constructs containing two DR1 elements of the CYP2C9 promoter were increased by HNF4alpha, whereas those of the CYP2C19 promoter were not increased. The introduction of mutations into either the upstream or downstream element in the CYP2C9 gene abolished the responsiveness to HNF4alpha. We also examined whether HNF4alpha could bind to the promoter regions of the CYP2C9 and the CYP2C19 genes in vivo. The results of chromatin immunoprecipitation assays showed that HNF4alpha could bind to the promoter region of the CYP2C9 gene but not to that of the CYP2C19 promoter in the human liver. Taken together, our results suggest that HNF4alpha is a factor responsible for the difference between the expression levels of CYP2C9 and CYP2C19 in the human liver.
Collapse
Affiliation(s)
- Sachiyo Kawashima
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 2006; 46:123-49. [PMID: 16402901 DOI: 10.1146/annurev.pharmtox.46.120604.141059] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation and infection have long been known to downregulate the activity and expression of cytochrome P450 (CYP) enzymes involved in hepatic drug clearance. This can result in elevated plasma drug levels and increased adverse effects. Recent information on regulation of human CYP enzymes is presented, as are new developments in our understanding of the mechanisms of regulation. Experiments to study the effects of modulating CYP activities on the inflammatory response have yielded possible insights into the physiological consequences, if not the purpose, of the downregulation. Regulation of hepatic flavin monooxygenases, UDP-glucuronosyltransferases, sulfotransferases, glutathione S-transferases, as well as of hepatic transporters during the inflammatory response, exhibits similarities and differences with regulation of CYPs.
Collapse
Affiliation(s)
- Alison E Aitken
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
33
|
Fukushima-Uesaka H, Saito Y, Maekawa K, Saeki M, Kamatani N, Kajio H, Kuzuya N, Yasuda K, Sawada JI. Novel Genetic Variations and Haplotypes of Hepatocyte Nuclear Factor 4α(HNF4A) Pound in Japanese Type II Diabetic Patients. Drug Metab Pharmacokinet 2006; 21:337-46. [PMID: 16946562 DOI: 10.2133/dmpk.21.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thirty-nine single nucleotide variations, including 16 novel ones, were found in the 5' promoter region, all of the exons and their surrounding introns of HNF4A in 74 Japanese type II diabetic patients. The following novel variations were identified (based on the amino acid numbering of splicing variant 2): -208G>C in the 5' promoter region; 1154C>T (A385V) and 1193T>C (M398T) in the coding exons; 1580G>A, 1852G>T, 2180C>T, 2190G>A, and 2362_2380delAAGAATGGTGTGGGAGAGG in the 3'-untranslated region, and IVS1+231G>A, IVS2-83C>T, IVS3+50C>T, IVS3-54delC, IVS5+173_176delTTAG, IVS5-181_-180delAT, IVS8-106A>G, and IVS9-151A>C in the introns. The allele frequencies were 0.311 for 2362_2380delAAGAATGGTGTGGGAGAGG, 0.054 for 1580G>A, 0.047 for 1852G>T, 0.020 for IVS1+231G>A, 0.014 for IVS9-151A>C, and 0.007 for the other 11 variations. In addition, one known nonsynonymous single nucleotide polymorphism, 416C>T (T139I), was detected at a 0.007 frequency. Based on the linkage disequilibrium profiles, the region analyzed was divided into three blocks. Haplotype analysis determined/inferred 10, 16, and 12 haplotypes for block 1, 2, and 3, respectively. Our results on HNF4A variations and haplotypes would be useful for pharmacogenetic studies in Japanese.
Collapse
|