1
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
2
|
Conner GE, Ivonnet P, Gelin M, Whitney P, Salathe M. H2O2 stimulates cystic fibrosis transmembrane conductance regulator through an autocrine prostaglandin pathway, using multidrug-resistant protein-4. Am J Respir Cell Mol Biol 2014; 49:672-9. [PMID: 23742099 DOI: 10.1165/rcmb.2013-0156oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) activity is essential for the maintenance of airway surface liquid depth, and therefore mucociliary clearance. Reactive oxygen species, increased during inflammatory airway diseases, alter CFTR activity. Here, H2O2 levels in the surface liquid of normal human bronchial epithelial cultures differentiated at the air-liquid interface were estimated, and H2O2-mediated changes in CFTR activity were examined. In Ussing chambers, H2O2-induced anion currents were sensitive to the CFTR inhibitors CFTRinh172 and GlyH-101. These currents were absent in cells from patients with cystic fibrosis. Responses to greater than 500 μM H2O2 were transient. Cyclooxygenase inhibitors blocked the H2O2 response, as did EP1 and EP4 receptor antagonists. A multidrug-resistant protein (MRP) inhibitor and short hairpin RNA directed against MRP4 blocked H2O2 responses. EP1 and EP4 agonists mimicked H2O2 in both control and MRP4 knockdown cells. Thus, H2O2 activates the synthesis, export, and binding of prostanoids via EP4 and, interestingly, EP1 receptors in normal, differentiated human airway epithelial cells to activate cyclic adenosine monophosphate pathways that in turn activate CFTR channels in the apical membrane.
Collapse
Affiliation(s)
- Gregory E Conner
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, and
| | | | | | | | | |
Collapse
|
3
|
Hibino Y, Morise M, Ito Y, Mizutani T, Matsuno T, Ito S, Hashimoto N, Sato M, Kondo M, Imaizumi K, Hasegawa Y. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms. Am J Respir Cell Mol Biol 2011; 45:684-91. [PMID: 21474433 DOI: 10.1165/rcmb.2010-0332oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho-kinase, which is believed to interact with actin cytoskeleton.
Collapse
Affiliation(s)
- Yoshitaka Hibino
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Heterologous regulation of anion transporters by menthol in human airway epithelial cells. Eur J Pharmacol 2010; 635:204-11. [PMID: 20362570 DOI: 10.1016/j.ejphar.2010.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/11/2010] [Accepted: 03/13/2010] [Indexed: 02/02/2023]
Abstract
The present study concerns previously unreported effects of menthol, a cyclic terpene alcohol produced by the peppermint herb, on anion transporters in polarized human airway Calu-3 epithelia. Application of menthol (0.01-1mM) attenuated transepithelial anion transport, estimated as short-circuit currents (I(SC)), after stimulation by forskolin (10microM) but not before. In contrast, menthol potentiated forskolin-stimulated and -unstimulated apical Cl(-) conductance, which reflected the cystic fibrosis transmembrane conductance regulator (CFTR: the cAMP-regulated Cl(-) channel)-mediated conductance, without correlation to changes in cytosolic cAMP levels. These results indicate that menthol-induced attenuation of forskolin-induced I(SC) despite CFTR up-regulation was due to cAMP-independent inhibition of basolateral anion uptake, which is the rate-limiting step for transepithelial anion transport. Analyses of the responsible basolateral anion transporters revealed that forskolin increased both bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2Cl(-) cotransporter [NKCC1])- and DNDS (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters [NBC1/AE2])-sensitive I(SC) in the control whereas only the former was prevented by the application of menthol. Neither the bumetanide- nor DNDS-sensitive component was, however, reduced by menthol without forskolin. These heterologous effects of menthol were reproduced by latrunculin B, an inhibitor of actin polymerization. F-actin staining showed that menthol prevented forskolin-stimulated rearrangements of actin microfilaments without affecting the distribution of forskolin-unstimulated microfilaments. Collectively, menthol functions as an activator of CFTR and prevents activation of NKCC1 without affecting NBC1/AE although all of these transporters are commonly cAMP-dependent. The heterologous effects may be mediated by the actin cytoskeleton, which interacts with CFTR and NKCC1.
Collapse
|
5
|
Schwarzer C, Fischer H, Kim EJ, Barber KJ, Mills AD, Kurth MJ, Gruenert DC, Suh JH, Machen TE, Illek B. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells. Free Radic Biol Med 2008; 45:1653-62. [PMID: 18845244 PMCID: PMC2628806 DOI: 10.1016/j.freeradbiomed.2008.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/25/2008] [Accepted: 09/01/2008] [Indexed: 11/22/2022]
Abstract
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Horst Fischer
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Eun-Jin Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Katharine J. Barber
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Aaron D. Mills
- Department of Chemistry, University of California, Davis, California
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, California
| | - Dieter C. Gruenert
- California Pacific Medical Center Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Jung H. Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Beate Illek
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
6
|
Matsuno T, Ito Y, Ohashi T, Morise M, Takeda N, Shimokata K, Imaizumi K, Kume H, Hasegawa Y. Dual pathway activated by tert-butyl hydroperoxide in human airway anion secretion. J Pharmacol Exp Ther 2008; 327:453-64. [PMID: 18664589 DOI: 10.1124/jpet.108.141580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed the mechanisms underlying the ion transport induced by tert-butyl hydroperoxide (t-BOOH), a membrane-permeant oxidant that has been widely used as a model of oxidative stress, in human airway epithelial cells (Calu-3). We found that t-BOOH induced a short-circuit current that was composed of two distinct components, a peaked component (PC) and a sustained component (SC). Both components were reduced by the presence of H-89 (N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline) [10 microM, a protein kinase A (PKA) inhibitor] and clofilium (100 microM, a cAMP-dependent K+ channel inhibitor) but not by charybdotoxin (50 nM, a human intermediate conductance Ca2+-activated K+ channel inhibitor), suggesting that both PC and SC were generated through a common PKA-dependent/Ca2+-independent pathway. Notwithstanding, analyses of the physiological properties revealed that PC and SC were attributable to different pathways. PC, but not SC, was correlated with apical membrane Cl- conductance and was inhibited by the cyclooxygenase (COX)-2 inhibitor NS-398 (N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide; 10 microM). In contrast, SC, but not PC, was composed of a component sensitive to bumetanide (50 microM), an inhibitor of the basolateral Na+-K+-2Cl- cotransporter (NKCC1), and was abolished by the cytoskeleton dysfunction induced by cytochalasin D (10 microM) and (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane carboxamide (Y-27632; 20 microM). Collectively, t-BOOH induces PKA-related anion secretion through two independent pathways: rapid activation of apical anion efflux through a COX-2-dependent/cytoskeleton-independent pathway and relatively delayed activation of NKCC1 for basolateral anion uptake through a COX-2-independent/cytoskeleton-dependent pathway.
Collapse
Affiliation(s)
- Tadakatsu Matsuno
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sites of action of hydrogen peroxide on ion transport across rat distal colon. Br J Pharmacol 2008; 154:991-1000. [PMID: 18587445 DOI: 10.1038/bjp.2008.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was the identification of the mechanism of oxidant-induced intestinal secretion. EXPERIMENTAL APPROACH The action of H2O2 on ion transport across rat distal colon was evaluated in Ussing chambers. Changes in cytosolic Ca2+ concentration were measured using fura-2. KEY RESULTS H2O2 concentration-dependently induced an increase in short-circuit current (Isc), which was due to a stimulation of Cl(-) secretion. The effect of H2O2 was dependent on the presence of serosal Ca2+. It was inhibited after emptying of intracellular Ca2+ stores by cyclopiazonic acid or blockade of ryanodine receptors by ruthenium red, whereas a blocker of inositol 1,4,5-trisphosphate receptors was less effective. Fura 2-experiments confirmed an increase in the cytosolic Ca2+ concentration in the presence of H2O2. Measurements of Cl- currents across the apical membrane at basolaterally depolarized epithelia revealed the activation of a glibenclamide-sensitive, SITS-resistant Cl- conductance by the oxidant. The activation of this conductance was inhibited after blockade of protein kinases with staurosporine. When the apical membrane was permeabilized with nystatin, two sites of action of H2O2 were identified at the basolateral membrane. The oxidant stimulated a basolateral tetrapentylammonium-sensitive K+ conductance and increased the current generated by the Na+-K+ pump. Pretreatment of the tissues with H2O2 reduced the action of subsequently administered Ca2+-, cAMP- and cGMP-dependent secretagogues demonstrating a long-term downregulation after the initial secretory response evoked by the oxidant. CONCLUSIONS AND IMPLICATIONS H2O2 affects colonic anion secretion by action sites at both the apical, as well as the basolateral membrane.
Collapse
|
8
|
Chappell AE, Bunz M, Smoll E, Dong H, Lytle C, Barrett KE, McCole DF. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J 2008; 22:2023-36. [PMID: 18211955 DOI: 10.1096/fj.07-099697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H(2)O(2)), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl(-) secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H(2)O(2) inhibit Ca(2+)-dependent Cl(-) secretion across T(84) colonic epithelial cells by elevating cytosolic Ca(2+), which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca(2+)-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca(2+)-dependent stimuli is mediated in part by K(+) efflux through basolateral K(+) channels and Cl(-) uptake by the Na(+)-K(+)-2Cl(-) cotransporter, NKCC1. We demonstrate that H(2)O(2) inhibits Ca(2+)-dependent basolateral K(+) efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl(-) conductance. Thus, we have demonstrated that H(2)O(2) inhibits Ca(2+)-dependent Cl(-) secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.
Collapse
Affiliation(s)
- Alfred E Chappell
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Penheiter AR, Bogoger M, Ellison PA, Oswald B, Perkins WJ, Jones KA, Cremo CR. H(2)O(2)-induced kinetic and chemical modifications of smooth muscle myosin: correlation to effects of H(2)O(2) on airway smooth muscle. J Biol Chem 2006; 282:4336-4344. [PMID: 17121824 DOI: 10.1074/jbc.m609499200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effect of H(2)O(2) on smooth muscle heavy meromyosin (HMM) and subfragment 1 (S1) was examined. The number of molecules that retained the ability to bind ATP and the actinactivated rate of P(i) release were measured by single-turnover kinetics. H(2)O(2) treatment caused a decrease in HMM regulation from 800- to 27-fold. For unphosphorylated and phosphorylated heavy meromyosin and for S1, approximately 50% of the molecules lost the ability to bind to ATP. H(2)O(2) treatment in the presence of EDTA protected against ATPase inactivation and against the loss of total ATP binding. Inactivation of S1 versus time correlated to a loss of reactive thiols. Treatment of H(2)O(2)-inactivated phosphorylated HMM or S1 with dithiothreitol partially reactivated the ATPase but had no effect on total ATP binding. H(2)O(2)-inactivated S1 contained a prominent cross-link between the N-terminal 65-kDa and C-terminal 26-kDa heavy chain regions. Mass spectral studies revealed that at least seven thiols in the heavy chain and the essential light chain were oxidized to cysteic acid. In thiophosphorylated porcine tracheal muscle strips at pCa 9 + 2.1 mM ATP, H(2)O(2) caused a approximately 50% decrease in the amplitude but did not alter the rate of force generation, suggesting that H(2)O(2) directly affects the force generating complex. Dithiothreitol treatment reversed the H(2)O(2) inhibition of the maximal force by approximately 50%. These data, when compared with the in vitro kinetic data, are consistent with a H(2)O(2)-induced loss of functional myosin heads in the muscle.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, and the
| | - Michelle Bogoger
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Patricia A Ellison
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Barbara Oswald
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, and the
| | - William J Perkins
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, and the
| | - Keith A Jones
- Department of Anesthesiology, University of Alabama-Birmingham, Birmingham, Alabama 35249-6810
| | - Christine R Cremo
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557.
| |
Collapse
|