1
|
Klimek L, Werminghaus P, Casper I, Cuevas M. The pharmacotherapeutic management of allergic rhinitis in people with asthma. Expert Opin Pharmacother 2024; 25:101-111. [PMID: 38281139 DOI: 10.1080/14656566.2024.2307476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Up to 90% of asthmatic patients have comorbid allergic rhinitis (AR). Although appropriate therapy of AR can improve asthma symptoms and management, AR is often underdiagnosed and under-treated in asthmatics.A non-systematic literature research was conducted on AR as a comorbidity and risk factor of asthma. Latest international publications in medical databases, international guidelines, and the Internet were reviewed. AREAS COVERED Based on the conducted literature research there is proved evidence of the necessity of diagnosis and treatment of AR in patients with asthma because it affects health care utilization. Therefore, it is recommended in national and global guidelines. EXPERT OPINION AR increases the risk of asthma development and contributes to the severity of an existing asthma. Early treatment of AR with drugs as intranasal steroids, antihistamines, leukotriene receptor antagonists, and especially allergen-specific immunotherapy can reduce the risk of asthma development and the concomitant medication use in addition to severity of symptoms in AR and asthma.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden, Wiesbaden, Germany
| | | | - Ingrid Casper
- Center for Rhinology and Allergology Wiesbaden, Wiesbaden, Germany
| | - Mandy Cuevas
- Clinic and Policlinic of Otorhinolaryngology, Head and Neck Surgery, University Clinic Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
2
|
Matsumoto K, Sugimoto F, Mizuno T, Hayashi T, Okamura R, Nishioka T, Yasuda H, Horie S, Kido MA, Kato S. Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity. Cell Tissue Res 2023; 391:287-303. [PMID: 36513829 DOI: 10.1007/s00441-022-03723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan.
| | - Fumika Sugimoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Toshiki Mizuno
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Taisei Hayashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Ririka Okamura
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Takuya Nishioka
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Chiba, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| |
Collapse
|
3
|
Huang Z, Tang J, Jiang X, Xie T, Zhang M, Lan D, Pi S, Tan Z, Yi B, Li Y. Iron-catalyzed hydroaminocarbonylation of alkynes: Selective and efficient synthesis of primary α,β-unsaturated amides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Ågren L, Elfsmark L, Akfur C, Jonasson S. High concentrations of ammonia induced cytotoxicity and bronchoconstriction in a precision-cut lung slices rat model. Toxicol Lett 2021; 349:51-60. [PMID: 34118312 DOI: 10.1016/j.toxlet.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Exposure to high concentrations of ammonia (NH3) can cause life-threatening lung damages. The objective of this study was to establish a translational in vitro model for NH3-induced lung injury. Precision-cut lung slices (PCLS) from rats were exposed to NH3 and toxicological responses and cell viability were quantified by analysis of LDH, WST-1, inflammatory mediators (IL-1β, IL-6, CINC-1, MMP-9, RAGE and IL-18), and by microscopic evaluation of bronchoconstriction induced by electric-field-stimulation (EFS) or methacholine (MCh). Different treatment strategies were assessed to prevent or reverse the damages caused by NH3 using anti-inflammatory, anti-oxidant or neurologically active drugs. Exposure to NH3 caused a concentration-dependent increase in cytotoxicity (LDH/WST-1) and IL-1β release in PCLS medium. None of the treatments reduced cytotoxicity. Deposition of NH3 (24-59 mM) on untreated PCLS elicited an immediate concentration-dependent bronchoconstriction. Unlike MCh, the EFS method did not constrict the airways in PCLS at 5 h after NH3-exposure (47-59 mM). Atropine and TRP-channel antagonists blocked EFS-induced bronchoconstriction but these inhibitors could not block the immediate NH3-induced bronchoconstriction. In conclusion, NH3 exposure caused cytotoxic effects and lung damages in a concentration-dependent manner and this PCLS method offers a way to identify and test new concepts of medical treatments and biomarkers that may be of prognostic value.
Collapse
Affiliation(s)
- Lina Ågren
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Christine Akfur
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
5
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
6
|
Gao X, Zhuang J, Zhao L, Wei W, Xu F. Cross-effect of TRPV1 and EP3 receptor on coughs and bronchopulmonary C-neural activities. PLoS One 2021; 16:e0246375. [PMID: 33529249 PMCID: PMC7853511 DOI: 10.1371/journal.pone.0246375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2)-induced coughs in vivo and vagal nerve depolarization in vitro are inhibited by systemic and local administration of prostaglandin EP3 receptor (L-798106) and TRPV1 antagonists (JNJ 17203212). These results indicate a modulating effect of TRPV1 on the EP3 receptor-mediated cough responses to PGE2 likely through the vagal sensory nerve. This study aimed to determine whether 1) inhalation of aerosolized JNJ 17203212 and L-798106 affected cough responses to citric acid (CA, mainly stimulating TRPV1) and PGE2; 2) TRPV1 and EP3 receptor morphologically are co-expressed and electrophysiologically functioned in the individual of vagal pulmonary C-neurons (cell bodies of bronchopulmonary C-fibers in the nodose/jugular ganglia); and 3) there was a cross-effect of TRPV1 and EP3 receptor on these neural excitations. To this end, aerosolized CA or PGE2 was inhaled by unanesthetized guinea pigs pretreated without or with each antagonist given in aerosol form. Immunofluorescence was applied to identify the co-expression of TRPV1 and EP3 receptor in vagal pulmonary C-neurons (retrogradely traced by DiI). Whole-cell voltage patch clamp approach was used to detect capsaicin (CAP)- and PGE2-induced currents in individual vagal pulmonary C-neurons and determine the effects of the TRPV1 and EP3 receptor antagonists on the evoked currents. We found that PGE2-induced cough was attenuated by JNJ 17203212 or L-798106 and CA-evoked cough greatly suppressed only by JNJ 17203212. Approximately 1/4 of vagal pulmonary C-neurons co-expressed EP3 with a cell size < 20 μm. Both CAP- and PGE2-induced currents could be recorded in the individuals of some vagal pulmonary C-neurons. The former was largely inhibited only by JNJ 17203212, while the latter was suppressed by JNJ 17203212 or L-798106. The similarity of the cross-effect of both antagonists on cough and vagal pulmonary C-neural activity suggests that a subgroup of vagal pulmonary C-neurons co-expressing TRPV1 and EP3 receptor is, at least in part, responsible for the cough response to PGE2.
Collapse
Affiliation(s)
- Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
| | - Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
| | - Lei Zhao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
7
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
8
|
Wu N, Nishioka WK, Derecki NC, Maher MP. High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci Rep 2019; 9:12692. [PMID: 31481721 PMCID: PMC6722131 DOI: 10.1038/s41598-019-49070-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Measurement of intracellular calcium in live cells is a key component of a wide range of basic life science research, and crucial for many high-throughput assays used in modern drug discovery. Synthetic calcium indicators have become the industry standard, due their ease of use, high reliability, wide dynamic range, and availability of a large variety of spectral and chemical properties. Genetically-encoded calcium indicators (GECIs) have been optimized to the point where their performance rivals that of synthetic calcium indicators in many applications. Stable expression of a GECI has distinct advantages over synthetic calcium indicators in terms of reagent cost and simplification of the assay process. We generated a clonal cell line constitutively expressing GCaMP6s; high expression of the GECI was driven by coupling to a blasticidin resistance gene with a self-cleaving cis-acting hydrolase element (CHYSEL) 2A peptide. Here, we compared the performance of the GECI GCaMP6s to the synthetic calcium indicator fluo-4 in a variety of assay formats. We demonstrate that the pharmacology of ion channel and GPCR ligands as determined using the two indicators is highly similar, and that GCaMP6s is viable as a direct replacement for a synthetic calcium indicator.
Collapse
Affiliation(s)
- Nyantsz Wu
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | | | - Noël C Derecki
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Michael P Maher
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA.
| |
Collapse
|
9
|
Manrique E, Ferrer I, Lu C, Fontrodona X, Rodríguez M, Romero I. A Heterogeneous Ruthenium dmso Complex Supported onto Silica Particles as a Recyclable Catalyst for the Efficient Hydration of Nitriles in Aqueous Medium. Inorg Chem 2019; 58:8460-8470. [PMID: 31188583 DOI: 10.1021/acs.inorgchem.9b00664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present work, we describe an efficient method for the covalent anchoring of a Ru-dmso complex onto two types of supports: mesoporous silica particles (SP) and silica coated magnetic particles (MSNP). First, we have prepared and characterized the molecular complexes containing the bidentate pyridylpyrazole ligands pypz-Me and pypz-CH2COOEt, with the formula [RuIICl2(pypz-R)(dmso)2] (R = Me, 1; CH2COOEt, 2). Complex 2 was anchored onto the silica supports, yielding the heterogeneous systems SP@2 and MSNP@2 which were fully characterized by IR, UV-vis, SEM, TEM, TGA, and XPS techniques. Hydration of representative nitriles has been tested with the molecular complexes and their SP@2 and MSNP@2 heterogeneous counterparts, in aqueous medium under neutral conditions. The heterogeneous catalysts display high yields and excellent selectivity values. Both systems can be reused throughout several cycles for benzonitrile and acrylonitrile substrates, without any significant loss in reactivity. The MSNP@2 material can be easily recovered by a magnet, facilitating its reusability.
Collapse
Affiliation(s)
- Ester Manrique
- Departament de Química and Serveis Tècnics de Recerca , Universitat de Girona , C/M. Aurèlia Campmany, 69 , E-17003 Girona , Spain
| | - Ingrid Ferrer
- Departament de Química and Serveis Tècnics de Recerca , Universitat de Girona , C/M. Aurèlia Campmany, 69 , E-17003 Girona , Spain
| | - Changyong Lu
- Departament de Química , Universitat Autònoma de Barcelona , Campus UAB , 08193 Bellaterra , Spain
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca , Universitat de Girona , C/M. Aurèlia Campmany, 69 , E-17003 Girona , Spain
| | - Montserrat Rodríguez
- Departament de Química and Serveis Tècnics de Recerca , Universitat de Girona , C/M. Aurèlia Campmany, 69 , E-17003 Girona , Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca , Universitat de Girona , C/M. Aurèlia Campmany, 69 , E-17003 Girona , Spain
| |
Collapse
|
10
|
Al-Shamlan F, El-Hashim AZ. Bradykinin sensitizes the cough reflex via a B 2 receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase. Respir Res 2019; 20:110. [PMID: 31170972 PMCID: PMC6551914 DOI: 10.1186/s12931-019-1060-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/28/2019] [Indexed: 01/10/2023] Open
Abstract
Background Inhaled bradykinin (BK) has been reported to both sensitize and induce cough but whether BK can centrally sensitize the cough reflex is not fully established. In this study, using a conscious guinea-pig model of cough, we investigated the role of BK in the central sensitization of the cough reflex and in airway obstruction. Methods Drugs were administered, to guinea pigs, by the intracerebroventricular (i.c.v.) route. Aerosolized citric acid (0.2 M) was used to induce cough in a whole-body plethysmograph box, following i.c.v. infusion of drugs. An automated analyser recorded both cough and airway obstruction simultaneously. Results BK, administered by the i.c.v. route, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was inhibited following i.c.v. pretreatment with a B2 receptor antagonist, TRPV1 and TRPA1 channels antagonists and cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) inhibitors. Furthermore, co-administration of submaximal doses of the TRPV1 and TRPA1 antagonists or the COX and 12-LOX inhibitors resulted in a greater inhibition of both cough reflex and airway obstruction. Conclusions Our findings show that central BK administration sensitizes cough and enhances airway obstruction via a B2 receptor/TRPV1 and/or TRPA1 channels which are coupled via metabolites of COX and/or 12-LOX enzymes. In addition, combined blockade of TRPV1 and TRPA1 or COX and 12-LOX resulted in a greater inhibitory effect of both cough and airway obstruction. These results indicate that central B2 receptors, TRPV1/TRPA1 channels and COX/12-LOX enzymes may represent potential therapeutic targets for the treatment of cough hypersensitivity. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fajer Al-Shamlan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait.
| |
Collapse
|
11
|
Xia Y, Xia L, Lou L, Jin R, Shen H, Li W. Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. Lung 2018; 196:505-516. [PMID: 30094794 DOI: 10.1007/s00408-018-0145-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
Chronic airway inflammatory diseases remain a major problem worldwide, such that there is a need for additional therapeutic targets and novel drugs. Transient receptor potential (TRP) channels are a group of non-selective cation channels expressed throughout the body that are regulated by various stimuli. TRP channels have been identified in numerous cell types in the respiratory tract, including sensory neurons, airway epithelial cells, airway smooth muscle cells, and fibroblasts. Different types of TRP channels induce cough in sensory neurons via the vagus nerve. Permeability and cytokine production are also regulated by TRP channels in airway epithelial cells, and these channels also contribute to the modulation of bronchoconstriction. TRP channels may cooperate with other TRP channels, or act in concert with calcium-dependent potassium channels and calcium-activated chloride channel. Hence, TRP channels could be the potential therapeutic targets for chronic airway inflammatory diseases. In this review, we aim to discuss the expression profiles and physiological functions of TRP channels in the airway, and the roles they play in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Lexin Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingyun Lou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Rui Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
12
|
Oka H, Yonezawa K, Kamikawa A, Ikegai K, Asai N, Shirakami S, Miyamoto S, Watanabe T, Kiso T, Takemoto Y, Tamura S, Kuramochi T. Design, synthesis, and biological evaluation of novel biphenyl-4-carboxamide derivatives as orally available TRPV1 antagonists. Bioorg Med Chem 2018; 26:3716-3726. [DOI: 10.1016/j.bmc.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/03/2023]
|
13
|
Shaikh TMY, Mulla SAR. One‐Pot Cascade Synthesis of 2‐Cyanoacrylamides via Sn‐Catalyzed Acetic Acid Free Selective Monohydration of Dinitrile. ChemistrySelect 2018. [DOI: 10.1002/slct.201703171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taufeekaslam M. Y. Shaikh
- Department Chemical Engineering and Process Development DivisionInstitution CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune - 411008 India
| | - Shafeek A. R. Mulla
- Department Chemical Engineering and Process Development DivisionInstitution CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune - 411008 India
| |
Collapse
|
14
|
Affiliation(s)
- Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sahar M. Jaffal
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel) 2016; 9:ph9040072. [PMID: 27854251 PMCID: PMC5198047 DOI: 10.3390/ph9040072] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Andrew J Shepherd
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Ferrer Í, Fontrodona X, Rodríguez M, Romero I. Ru(ii)-dmso complexes containing azole-based ligands: synthesis, linkage isomerism and catalytic behaviour. Dalton Trans 2016; 45:3163-74. [DOI: 10.1039/c5dt04376j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical ligand substitution in acetonitrile and chloroform, together with the kinetics of dmso linkage isomerization, are investigated in new Ru(ii)-dmso complexes that are also active as nitrile hydration catalysts.
Collapse
Affiliation(s)
- Íngrid Ferrer
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17071 Girona
- Spain
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17071 Girona
- Spain
| | - Montserrat Rodríguez
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17071 Girona
- Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17071 Girona
- Spain
| |
Collapse
|
17
|
Vijayvergiya V, Acharya S, Wilson SP, Schmidt JJ. Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers. PLoS One 2015; 10:e0141366. [PMID: 26513481 PMCID: PMC4626236 DOI: 10.1371/journal.pone.0141366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Electrophysiological characterization of ion channels is useful for elucidation of channel function as well as quantitative assessment of pharmaceutical effects on ion channel conductance. We used droplet bilayers to measure ensemble ion channel currents from membrane preparations made from TRPV1-expressing HEK cells. Conductance measurements showed rectification, activation by acid and capsaicin, and inhibition by capsazepine, SB 452533, and JNJ 17293212. We also quantitatively measured concentration-dependent inhibition of channel conductance through determination of capsazepine IC50 in agreement with previously published studies using patch clamp. These results, combined with the reduced apparatus and material requirements of droplet bilayers, indicate that this platform could be used for study of other physiologically relevant ion channels.
Collapse
Affiliation(s)
- Viksita Vijayvergiya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shiv Acharya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sidney P. Wilson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacob J. Schmidt
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Meents JE, Hoffmann J, Chaplan SR, Neeb L, Schuh-Hofer S, Wickenden A, Reuter U. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. J Headache Pain 2015; 16:57. [PMID: 26109436 PMCID: PMC4491068 DOI: 10.1186/s10194-015-0539-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022] Open
Abstract
Background The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine. Methods Male Sprague–Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was determined following injection of capsaicin into the carotid artery. Results Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777 only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and dose-dependent manner. Conclusion Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.
Collapse
Affiliation(s)
- Jannis E Meents
- Department of Physiology, Uniklinik RWTH Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany,
| | | | | | | | | | | | | |
Collapse
|
19
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
20
|
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:73-118. [PMID: 25744671 DOI: 10.1016/bs.pmbts.2015.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesia, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Zholos AV. TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr Neuropharmacol 2015; 13:279-91. [PMID: 26411771 PMCID: PMC4598440 DOI: 10.2174/1570159x13666150331223118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
There is rapidly growing evidence indicating multiple and important roles of Ca(2+)- permeable cation TRP channels in the airways, both under normal and disease conditions. The aim of this review was to summarize the current knowledge of TRP channels in sensing oxidative, chemical irritant and temperature stimuli by discussing expression and function of several TRP channels in relevant cell types within the respiratory tract, ranging from sensory neurons to airway smooth muscle and epithelial cells. Several of these channels, such as TRPM2, TRPM8, TRPA1 and TRPV1, are discussed in much detail to show that they perform diverse, and often overlapping or contributory, roles in airway hyperreactivity, inflammation, asthma, chronic obstructive pulmonary disease and other respiratory disorders. These include TRPM2 involvement in the disruption of the bronchial epithelial tight junctions during oxidative stress, important roles of TRPA1 and TRPV1 channels in airway inflammation, hyperresponsiveness, chronic cough, and hyperplasia of airway smooth muscles, as well as TRPM8 role in COPD and mucus hypersecretion. Thus, there is increasing evidence that TRP channels not only function as an integral part of the important endogenous protective mechanisms of the respiratory tract capable of detecting and ensuring proper physiological responses to various oxidative, chemical irritant and temperature stimuli, but that altered expression, activation and regulation of these channels may also contribute to the pathogenesis of respiratory diseases.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine.
| |
Collapse
|
22
|
Ryan NM, Gibson PG. Recent additions in the treatment of cough. J Thorac Dis 2014; 6:S739-47. [PMID: 25383209 DOI: 10.3978/j.issn.2072-1439.2014.03.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Worldwide, cough is regarded as a challenging clinical problem due to its frequency and often limited therapeutic options. Chronic cough that remains refractory to usual medical treatment causes significant quality of life impairment in people with this problem. METHODS We have examined current evidence on recent additions in the treatment of cough, specifically treatment of refractory chronic cough with speech pathology and gabapentin. Relevant randomised control trials, reviews and case reports were identified through a PubMed and SCOPUS search of English-language literature referring to these concepts over the last eight years. SUMMARY Of the one hundred and two articles comprising this review the majority investigated the role of the transient receptor potential (TRP) receptors TRP Vanilloid 1 (TRPV1) and TRPA1 in cough and the potential of TRP antagonists as effective anti-tussives. However, these have only been tested in the laboratory and therefore their clinical effectiveness is unknown. Behavioural treatments such as speech pathology have gained momentum and this was evident in the increasing number of articles investigating its positive effect on cough. Investigation on the effectiveness of neuromodulating medications in the treatment of cough have been supported primarily through case series reports and prospective reviews however; their use (particularly gabapentin) has been significantly advanced through recently conducted randomised controlled trials. CONCLUSIONS Recent additions in the treatment of chronic cough have been significant as they consider cough to have a unifying diagnosis of cough hypersensitivity with or without the presence of a neuropathic basis. Primarily, effective treatments for chronic cough target these areas and include behavioural treatment such as speech pathology and pharmaceutical treatment with neuromodulating medications such as gabapentin.
Collapse
Affiliation(s)
- Nicole M Ryan
- 1 Priority Centre for Asthma and Respiratory Diseases, School of Medicine and Public Health, The University of Newcastle, NSW 2308, Australia ; 2 VIVA, Level 2 West Wing, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Peter G Gibson
- 1 Priority Centre for Asthma and Respiratory Diseases, School of Medicine and Public Health, The University of Newcastle, NSW 2308, Australia ; 2 VIVA, Level 2 West Wing, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
23
|
McGarvey L. Update: the search for the human cough receptor. Lung 2014; 192:459-65. [PMID: 24770379 DOI: 10.1007/s00408-014-9581-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Despite the best efforts of basic and applied science, the identity of the human "cough receptor" remains elusive. The attraction of identifying a single "catch all" cough receptor is obvious, although such an objective is unlikely to be realised given the concept of "cough hypersensitivity," which is now considered the most clinically relevant description of what underlies problem coughing. One means of progressing this area is to join the thinking and experimental effort of basic science and clinical research in an effective manner. Some of the best examples of cooperative and translational research over the years together with an update on the most recent work will be discussed in this article.
Collapse
Affiliation(s)
- Lorcan McGarvey
- Centre for Infection and Immunity, Queens University Belfast, Health Sciences Building, Lisburn Road, Belfast, BT9 7BL, Northern Ireland,
| |
Collapse
|
24
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
25
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
26
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
27
|
Birrell MA, Bonvini SJ, Dubuis E, Maher SA, Wortley MA, Grace MS, Raemdonck K, Adcock JJ, Belvisi MG. Tiotropium modulates transient receptor potential V1 (TRPV1) in airway sensory nerves: A beneficial off-target effect? J Allergy Clin Immunol 2014; 133:679-87.e9. [PMID: 24506933 PMCID: PMC3969581 DOI: 10.1016/j.jaci.2013.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Abstract
Background Recent studies have suggested that the long-acting muscarinic receptor antagonist tiotropium, a drug widely prescribed for its bronchodilator activity in patients with chronic obstructive pulmonary disease and asthma, improves symptoms and attenuates cough in preclinical and clinical tussive agent challenge studies. The mechanism by which tiotropium modifies tussive responses is not clear, but an inhibition of vagal tone and a consequent reduction in mucus production from submucosal glands and bronchodilation have been proposed. Objective The aim of this study was to investigate whether tiotropium can directly modulate airway sensory nerve activity and thereby the cough reflex. Methods We used a conscious cough model in guinea pigs, isolated vagal sensory nerve and isolated airway neuron tissue– and cell-based assays, and in vivo single-fiber recording electrophysiologic techniques. Results Inhaled tiotropium blocked cough and single C-fiber firing in the guinea pig to the transient receptor potential (TRP) V1 agonist capsaicin, a clinically relevant tussive stimulant. Tiotropium and ipratropium, a structurally similar muscarinic antagonist, inhibited capsaicin responses in isolated guinea pig vagal tissue, but glycopyrrolate and atropine did not. Tiotropium failed to modulate other TRP channel–mediated responses. Complementary data were generated in airway-specific primary ganglion neurons, demonstrating that tiotropium inhibited capsaicin-induced, but not TRPA1-induced, calcium movement and voltage changes. Conclusion For the first time, we have shown that tiotropium inhibits neuronal TRPV1-mediated effects through a mechanism unrelated to its anticholinergic activity. We speculate that some of the clinical benefit associated with taking tiotropium (eg, in symptom control) could be explained through this proposed mechanism of action.
Collapse
Affiliation(s)
- Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eric Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah A Maher
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michael A Wortley
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Megan S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kristof Raemdonck
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - John J Adcock
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
28
|
Salam N, Kundu SK, Molla RA, Mondal P, Bhaumik A, Islam SM. Ag-grafted covalent imine network material for one-pot three-component coupling and hydration of nitriles to amides in aqueous medium. RSC Adv 2014. [DOI: 10.1039/c4ra07622b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver grafted porous covalent imine network material (Ag-CIN-1) has been designed via a simple chemical route and it has been successfully employed as catalyst for the hydration of nitriles to amides and the A3 coupling reactions of an alkyne, an amine and an aldehyde in water.
Collapse
Affiliation(s)
- Noor Salam
- Department of Chemistry
- University of Kalyani
- , India
| | - Sudipta K. Kundu
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| | | | | | - Asim Bhaumik
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| | | |
Collapse
|
29
|
Tílvez E, Menéndez MI, López R. Unraveling the Reaction Mechanism on Nitrile Hydration Catalyzed by [Pd(OH2)4]2+: Insights from Theory. Inorg Chem 2013; 52:7541-9. [DOI: 10.1021/ic400554g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Elkin Tílvez
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| | - María I. Menéndez
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| | - Ramón López
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| |
Collapse
|
30
|
Kim S, Hwang SW. Emerging roles of TRPA1 in sensation of oxidative stress and its implications in defense and danger. Arch Pharm Res 2013; 36:783-91. [PMID: 23558672 DOI: 10.1007/s12272-013-0098-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Transient receptor potential ankyrin subtype 1 (TRPA1) is a well-known ion channel that play a central role for pain sensation. In the peripheral sensory nerve terminals innervating the body tegument or organs, TRPA1 detects and is activated by diverse harmful environmental and internal stimuli. The TRPA1 activation results in neuronal firing, which finally sends a warning signal to our brain. However, sensitization or sustained activation of TRPA1 often causes plastic changes both in the neural pathway and in the peripheral tissues, leading to a pathologic state in tissue health and pain mediation. Recently, a unique covalent detection mode for reactive biological attacks was uncovered in the sensory mechanisms of TRPA1. Notably, the pool of the newly found reactive stimulators for TRPA1 includes oxidative stress. Here, we overview the nature of this interaction, and try to find biological meanings of the participation of such a rapid ionotrophic component in disease exacerbations. Acutely, its relatively rapid response can be understood in terms of efficiency for avoiding harmful milieu as quickly as possible, as implicated in the raison d'etre of the pain mechanism. Nonetheless, complex situations in a chronic disease progress may occur. As well, multiple interplays with known molecules on the redox defense mechanism are anticipated. At a therapeutic angle, how to control TRPA1 for promoting body's defensive potential will be a practical question but remains to be answered. Future investigations will likely give more detailed insights to understand the roles and target validity of TRPA1.
Collapse
Affiliation(s)
- Sangseong Kim
- Institute of Pharmaceutical Science and Technology, Hanyang University College of Pharmacy, ERICA Campus, Sangrok-Gu, Ansan-Shi, Gyeonggi-Do, 426-791, South Korea.
| | | |
Collapse
|
31
|
Ferrer Í, Rich J, Fontrodona X, Rodríguez M, Romero I. Ru(ii) complexes containing dmso and pyrazolyl ligands as catalysts for nitrile hydration in environmentally friendly media. Dalton Trans 2013; 42:13461-9. [DOI: 10.1039/c3dt51580j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Novel antitussive strategies. Drug Discov Today 2012; 18:380-8. [PMID: 23159360 DOI: 10.1016/j.drudis.2012.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/17/2012] [Accepted: 11/08/2012] [Indexed: 01/25/2023]
Abstract
Acute and chronic cough represent one of the most common symptoms of medical importance but effective pharmacotherapy is, to all intents and purposes, absent. Numerous initiatives targeting the recently discovered tussive pathways are in progress. Here, we review the current antitussive armamentarium and provide an update on the novel strategies and compounds in development.
Collapse
|
33
|
Delescluse I, Mace H, Adcock JJ. Inhibition of airway hyper-responsiveness by TRPV1 antagonists (SB-705498 and PF-04065463) in the unanaesthetized, ovalbumin-sensitized guinea pig. Br J Pharmacol 2012; 166:1822-32. [PMID: 22320181 DOI: 10.1111/j.1476-5381.2012.01891.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Airway sensory nerves play a key role in respiratory cough, dyspnoea, airway hyper-responsiveness (AHR), all fundamental features of airway diseases [asthma and chronic obstructive pulmonary disease (COPD)]. Vagally mediated airway reflexes such as cough, bronchoconstriction and chest tightness originate from stimulation of airway sensory nerve endings. The transient receptor potential vanilloid 1 receptor (TRPV1) is present on peripheral terminals of airway sensory nerves and modulation of its activity represents a potential target for the pharmacological therapy of AHR in airway disease. EXPERIMENTAL APPROACH As guinea pig models can provide some of the essential features of asthma, including AHR, we have established the model with some classical pharmacological agents and examined the effect of the TRPV1 antagonists, SB-705498 and PF-04065463 on AHR to histamine evoked by ovalbumin (OA) in unanaesthetized sensitized guinea pigs restrained in a double chamber plethysmograph. Specific airway conductance (sGaw) derived from the airflow was calculated as a percentage of change from baseline. KEY RESULTS Cetirizine and salbutamol significantly inhibited OA-evoked bronchoconstriction [sGaw area under the curve (AUC): 70 and 78%, respectively]. Atropine, SB-705498 and PF-04065463 significantly inhibited OA-evoked AHR to histamine in unanaesthetized, OA-sensitized guinea pigs (sGaw AUC: 94%, 57% and 73%, respectively). Furthermore, this effect was not related to antagonism of histamine's activity. CONCLUSION AND IMPLICATIONS These data suggest that TRPV1 receptors located on airway sensory nerves are important in the development of AHR and that modulation of TRPV1-receptor activity represents a potential target for the pharmacological therapy of AHR in airway disease.
Collapse
Affiliation(s)
- I Delescluse
- Allergy & Respiratory Biology, Pfizer Global R&D, Sandwich, UK
| | | | | |
Collapse
|
34
|
Ma J, Altomare A, Guarino M, Cicala M, Rieder F, Fiocchi C, Li D, Cao W, Behar J, Biancani P, Harnett KM. HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G635-G645. [PMID: 22790593 PMCID: PMC3468560 DOI: 10.1152/ajpgi.00097.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT), the enzyme responsible for the production of platelet-activating factor (PAF). In addition, HCl causes release of IL-8 from the esophageal mucosa. We demonstrate that esophageal epithelial cells secrete proinflammatory mediators in response to HCl and that this response is mediated by ATP. Monolayers of the human esophageal epithelial cell line HET-1A were exposed to acidified cell culture medium (pH 5) for 12 min, a total of seven times over 48 h, to simulate the recurrent acid exposure clinically occurring in GERD. HCl upregulated mRNA and protein expression for the acid-sensing transient receptor potential cation channel, subfamily vanilloid member 1 (TRPV1), lyso-PAF AT, IL-8, eotaxin-1, -2, and -3, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1. The chemokine profile secreted by HET-1A cells in response to repeated HCl exposure parallels similar findings in erosive esophagitis patients. In HET-1A cells, the TRPV1 agonist capsaicin reproduced these findings for mRNA of the inflammatory mediators lyso-PAF AT, IL-8, and eotaxin-1. These effects were blocked by the TRPV1 antagonists iodoresiniferatoxin and JNJ-17203212. These effects were imitated by direct application of ATP and blocked by the nonselective ATP antagonist suramin. We conclude that HCl/TRPV-induced ATP release upregulated secretion of various chemoattractants by esophageal epithelial cells. These chemoattractants are selective for leukocyte subsets involved in acute inflammatory responses and allergic inflammation. The data support the validity of HET-1A cells as a model of the response of the human esophageal mucosa in GERD.
Collapse
Affiliation(s)
- Jie Ma
- Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Daller JR, Wong J, Brooks BD, McKee JS. An inexpensive system for evaluating the tussive and anti-tussive properties of chemicals in conscious, unrestrained guinea pigs. J Pharmacol Toxicol Methods 2012; 66:232-7. [PMID: 22796572 DOI: 10.1016/j.vascn.2012.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Commercial whole-body plethysmography systems used to evaluate the anti-tussive potential of drugs employ sophisticated technology, but these systems may be cost prohibitive for some laboratories. The present study describes an alternative, inexpensive system for evaluating the tussive and anti-tussive potential of drugs in conscious, unrestrained guinea pigs. METHODS The system is composed of a transparent small animal anesthesia induction box fitted with a microphone, a camera and a pneumotachometer to simultaneously capture audio, video, air flow and air pressure in real time. Data acquisition and analysis was performed using free software for audio and video, and a research pneumotach system for flow and pressure. System suitability testing was performed by exposing conscious, unrestrained guinea pigs to nebulized aqueous solutions of a selective agonist for TRPV1 (citric acid) or a selective agonist for TRPA1 (AITC), with or without pre-treatment with a selective antagonist for TRPV1 (BCTC) or a selective antagonist for TRPA1 (HC-030031). RESULTS The system easily discerned coughs from other respiratory events like sneezes. System suitability test results are as follows: AITC caused 10.7 (SEM=1.4592) coughs vs. 5.8 (SEM=1.6553) when pre-treated with HC-030031 (P<0.05). Citric acid caused 12.4 (SEM=1.4697) coughs vs. 3.2 (SEM=1.3928) when pre-treated with BCTC (P<0.002). DISCUSSION We have described in detail an inexpensive system for evaluating the tussive and anti-tussive potential of chemicals in conscious, unrestrained guinea pigs. Suitability testing indicates that the system is comparable to a commercial whole-body plethysmography system for detecting and differentiating between coughs and sneezes. This system may provide some investigators a cost-conscious alternative to more expensive commercial whole-body plethysmography systems.
Collapse
Affiliation(s)
- J R Daller
- Technology Resources, Baxter Healthcare Corporation, Round Lake, IL 60073, USA.
| | | | | | | |
Collapse
|
36
|
Preti D, Szallasi A, Patacchini R. TRP channels as therapeutic targets in airway disorders: a patent review. Expert Opin Ther Pat 2012; 22:663-95. [PMID: 22667456 DOI: 10.1517/13543776.2012.696099] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease, affect millions of patients worldwide. New therapeutic approaches to these conditions are urgently needed since current treatment options provide only symptomatic relief. Transient receptor potential (TRP) ion channels are emerging molecular target candidates for the development of novel, disease-modifying drugs addressing airway diseases. AREAS COVERED The authors review the patent literature on novel molecules targeting TRP channels (in particular TRPA1, TRPV1, TRPM8 and TRPC6) that are currently studied in clinical trials or are candidates for future clinical evaluation in the management of respiratory diseases. EXPERT OPINION The patent literature highlights TRPA1 and TRPV1 channels as the most advanced therapeutic targets in respiratory disorders. TRPV1 antagonists relieve cough in preclinical studies. TRPA1 antagonists not only are anti-tussive but also show efficacy in allergic asthma models. However, to date, only minimal clinical data are available regarding the effects of selective, small-molecule TRPV1 and TRPA1 blockers in respiratory disorders. Clearly, long-term clinical studies are required to confirm the expectations based on preclinical data. In conclusion, the current status of this rapidly expanding research area raises cautious optimism for TRPA1 (and possibly also TRPV1) antagonists as promising anti-tussive/anti-asthma drug candidates.
Collapse
Affiliation(s)
- Delia Preti
- University of Ferrara, Department of Pharmaceutical Sciences, via Fossato di Mortara 17/19, 44121, Italy
| | | | | |
Collapse
|
37
|
Tílvez E, Menéndez MI, López R. On the Mechanism of the [Cp2Mo(OH)(OH2)]+-Catalyzed Nitrile Hydration to Amides: A Theoretical Study. Organometallics 2012. [DOI: 10.1021/om200541z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Elkin Tílvez
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| | - María I. Menéndez
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| | - Ramón López
- Departamento de Química
Física y Analítica,
Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Principado de
Asturias, Spain
| |
Collapse
|
38
|
Gordi Z, Eshghi H. Natural Kaolin Supported Sulfuric Acid as an Efficient Catalyst for Selective Hydrolysis of Nitriles to Amides. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2011. [DOI: 10.5012/jkcs.2011.55.4.715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Maher MP, Bhattacharya A, Ao H, Swanson N, Wu NT, Freedman J, Kansagara M, Scott B, Li DH, Eckert WA, Liu Y, Sepassi K, Rizzolio M, Fitzgerald A, Liu J, Branstetter BJ, Rech JC, Lebsack AD, Breitenbucher JG, Wickenden AD, Chaplan SR. Characterization of 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729209) as a novel TRPV1 antagonist. Eur J Pharmacol 2011; 663:40-50. [PMID: 21575625 DOI: 10.1016/j.ejphar.2011.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
As an integrator of multiple nociceptive and/or inflammatory stimuli, TRPV1 is an attractive therapeutic target for the treatment of various painful disorders. Several TRPV1 antagonists have been advanced into clinical trials and the initial observations suggest that TRPV1 antagonism may be associated with mild hyperthermia and thermal insensitivity in man. However, no clinical efficacy studies have been described to date, making an assessment of risk:benefit impossible. Furthermore, it is not clear whether these early observations are representative of all TRPV1 antagonists and whether additional clinical studies with novel TRPV1 antagonists are required in order to understand optimal compound characteristics. In the present study we describe 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729309) as a novel, TRPV1 antagonist. JNJ-39729209 displaced tritiated resiniferotoxin binding to TRPV1 and prevented TRPV1 activation by capsaicin, protons and heat. In-vivo, JNJ-39729209 blocked capsaicin-induced hypotension, induced a mild hyperthermia and inhibited capsaicin-induced hypothermia in a dose dependent manner. JNJ-39729209 showed significant efficacy against carrageenan- and CFA-evoked thermal hyperalgesia and exhibited significant anti-tussive activity in a guinea-pig model of capsaicin-induced cough. In pharmacokinetic studies, JNJ-39729209 was found to have low clearance, a moderate volume of distribution, good oral bioavailability and was brain penetrant. On the basis of these findings, JNJ-39729209 represents a structurally novel TRPV1 antagonist with potential for clinical development. The advancement of JNJ-39729209 into human clinical trials could be useful in further understanding the analgesic potential of TRPV1 antagonists.
Collapse
Affiliation(s)
- Michael P Maher
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gibson PG, Ryan NM. Cough pharmacotherapy: current and future status. Expert Opin Pharmacother 2011; 12:1745-55. [PMID: 21524236 DOI: 10.1517/14656566.2011.576249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chronic cough is responsible for a significant illness burden in the community. Refractory cough causes substantial quality-of-life impairment in people with this problem. Neuromodulators for sensory neuropathic cough and new compounds to block transient receptor potential (TRP) receptors hold promise for chronic cough and upper airway hypersensitivity. AREAS COVERED The authors examine current evidence on the new concepts of chronic cough that relate to the study of idiopathic/refractory cough, the role of central nervous system control of cough and the role of laryngeal irritability and sensory neuropathy in cough. Compounds in development to block TRP receptors, treatment for a neuropathic disorder with neuromodulators and cough suppression with opioids, especially codeine and morphine, are investigated. Relevant randomized control trials and case reports were identified through a PubMed search of English-language literature referring to these concepts. EXPERT OPINION The concept that sensory neuropathic disorder may underlie some cases of chronic cough is useful in characterizing cough, understanding its mechanisms and guiding drug development.
Collapse
Affiliation(s)
- Peter G Gibson
- University of Newcastle, School of Medicine and Public Health, Centre for Asthma and Respiratory Diseases, Newcastle, NSW 2308, Australia.
| | | |
Collapse
|
41
|
Banner KH, Igney F, Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011; 130:371-84. [PMID: 21420429 DOI: 10.1016/j.pharmthera.2011.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/16/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels is divided into six subfamilies based on sequence homology TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). The expression of these channels is especially abundant in sensory nerves, and there is increasing evidence demonstrating their existence in a broad range of cell types which are thought to play a key role in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These ion channels can be activated by a diverse range of chemical and physical stimuli. Physical stimuli include temperature, membrane potential changes and osmotic stress, and some of the more well known chemical stimuli include capsaicin (TRPV1), menthol (TRPM8) and acrolein (TRPA1). There is increasing evidence in this rapidly moving field to suggest that selective blockers of these channels may represent attractive novel strategies to treat characteristic features of respiratory diseases such as asthma and COPD. This review focuses on summarising the evidence that modulation of selected TRP channels may have beneficial effects at targeting key features of these respiratory diseases including airways inflammation, airways hyper-reactivity, mucus secretion and cough.
Collapse
Affiliation(s)
- Katharine Helen Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom.
| | | | | |
Collapse
|
42
|
Discovery and synthesis of 6,7,8,9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists. Bioorg Med Chem Lett 2010; 20:7137-41. [DOI: 10.1016/j.bmcl.2010.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022]
|
43
|
Lebsack AD, Rech JC, Branstetter BJ, Hawryluk NA, Merit JE, Allison B, Rynberg R, Buma J, Rizzolio M, Swanson N, Ao H, Maher MP, Herrmann M, Freedman J, Scott BP, Luo L, Bhattacharya A, Wang Q, Chaplan SR, Wickenden AD, Breitenbucher JG. 1,2-Diamino-ethane-substituted-6,7,8,9-tetrahydro-5H-pyrimido[4,5-d]azepines as TRPV1 antagonists with improved properties. Bioorg Med Chem Lett 2010; 20:7142-6. [DOI: 10.1016/j.bmcl.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
|
44
|
Sensory detection and responses to toxic gases: mechanisms, health effects, and countermeasures. Ann Am Thorac Soc 2010; 7:269-77. [PMID: 20601631 DOI: 10.1513/pats.201001-004sm] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhalation of reactive gases and vapors can lead to severe damage of the airways and lung, compromising the function of the respiratory system. Exposures to oxidizing, electrophilic, acidic, or basic gases frequently occur in occupational and ambient environments. Corrosive gases and vapors such as chlorine, phosgene, and chloropicrin were used as warfare agents and in terrorist acts. Chemical airway exposures are detected by the olfactory, gustatory, and nociceptive sensory systems that initiate protective physiological and behavioral responses. This review focuses on the role of airway nociceptive sensory neurons in chemical sensing and discusses the recent discovery of neuronal receptors for reactive chemicals. Using physiological, imaging, and genetic approaches, Transient Receptor Potential (TRP) ion channels in sensory neurons were shown to respond to a wide range of noxious chemical stimuli, initiating pain, respiratory depression, cough, glandular secretions, and other protective responses. TRPA1, a TRP ion channel expressed in chemosensory C-fibers, is activated by almost all oxidizing and electrophilic chemicals, including chlorine, acrolein, tear gas agents, and methyl isocyanate, the highly noxious chemical released in the Bhopal disaster. Chemicals likely activate TRPA1 through covalent protein modification. Animal studies using TRPA1 antagonists or TRPA1-deficient mice confirmed the role of TRPA1 in chemically induced respiratory reflexes, pain, and inflammation in vivo. New research shows that sensory neurons are not merely passive sensors of chemical exposures. Sensory channels such as TRPA1 are essential for maintenance of airway inflammation in asthma and may contribute to the progression of airway injury following high-level chemical exposures.
Collapse
|
45
|
Schade MA, Manolikakes G, Knochel P. Preparation of Primary Amides from Functionalized Organozinc Halides. Org Lett 2010; 12:3648-50. [DOI: 10.1021/ol101469f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias A. Schade
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Georg Manolikakes
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Paul Knochel
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
46
|
Bellina F, Rossi R. Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C-H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem Rev 2010; 110:1082-146. [PMID: 19610600 DOI: 10.1021/cr9000836] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio Bellina
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56125 Pisa, Italy
| | | |
Collapse
|
47
|
Venkatasamy R, McKenzie A, Page CP, Walker MJ, Spina D. Use of within-group designs to test anti-tussive drugs in conscious guinea-pigs. J Pharmacol Toxicol Methods 2010; 61:157-62. [PMID: 20193769 DOI: 10.1016/j.vascn.2010.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 12/13/2009] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cough is a common medical problem for which there are few effective drug treatments. A limited understanding of the mechanisms of induction and maintenance of cough and a paucity of suitable animal models frustrate drug discovery efforts to find novel anti-tussives. As in humans, guinea-pigs evoke a cough reflex upon exposure to tussive agents such as citric acid and capsaicin; both of which have been widely used to assess novel anti-tussive drugs. However, the potential for using within-group designs in drug development has received little attention and such designs may offer a way of assisting the drug discovery effort in the area of cough as well as other areas. METHODS Cough can be monitored in conscious guinea-pigs by placing animals in a Perspex chamber, in which air is continually exchanged by use of negative pressure and drug delivery of aerosols to the chamber can be accurately timed. Cough in response to a tussive agent (e.g. 0.2-0.4M citric acid; 10-30 microM capsaicin) is detected by the simultaneous microphonic recording of audible signals characteristic of the cough response as well as by positive pressure changes in the chamber generated by a cough dependent rapid expiration of air from the lungs. Both the sound and pressure signals are recorded using an online analyzer, whilst the number of coughs can be analyzed off-line. The number of coughs over a 15 min period is used to quantitate tussive events. RESULTS Reproducible cough can be detected in animals using cross-over designs that lend themselves to drug studies. Both the time and concentration dependence of anti-tussive drug action can be evaluated in the same animal. Furthermore, the effect of different anti-tussive drugs can be evaluated thereby reducing between group error and thereby improving the sensitivity of the test. DISCUSSION Repeated measures design improves the precision with which to evaluate anti-tussive drugs in preclinical models and could be used to make the drug discovery process more efficient.
Collapse
Affiliation(s)
- R Venkatasamy
- Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Science Division, School of Biomedical and Health Science, Kings College London, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Modulation of sensory nerve function and the cough reflex: understanding disease pathogenesis. Pharmacol Ther 2009; 124:354-75. [PMID: 19818366 DOI: 10.1016/j.pharmthera.2009.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/29/2022]
Abstract
To cough is a protective defence mechanism that is vital to remove foreign material and secretions from the airways and which in the normal state serves its function appropriately. Modulation of the cough reflex pathway in disease can lead to inappropriate chronic coughing and an augmented cough response. Chronic cough is a symptom that can present in conjunction with a number of diseases including chronic obstructive pulmonary disease (COPD) and asthma, although often the cause of chronic cough may be unknown. As current treatments for cough have proved to exhibit little efficacy and are largely ineffective, there is a need to develop novel, efficacious and safe antitussive therapies. The underlying mechanisms of the cough reflex are complex and involve a network of events, which are not fully understood. It is accepted that the cough reflex is initiated following activation of airway sensory nerves. Therefore, in the hope of identifying novel antitussives, much research has focused on understanding the neural mechanisms of cough provocation. Experimentally this has been undertaken using chemical or mechanical tussive stimuli in conjunction with animal models of cough and clinical cough assessments. This review will discuss the neural mechanisms involved in the cough, changes that occur under pathophysiological conditions and and how current research may lead to novel therapeutic opportunities for the treatment of cough.
Collapse
|
49
|
Cefalu JS, Guillon MA, Burbach LR, Zhu QM, Hu DQ, Ho MJ, Ford AP, Nunn PA, Cockayne DA. Selective Pharmacological Blockade of the TRPV1 Receptor Suppresses Sensory Reflexes of the Rodent Bladder. J Urol 2009; 182:776-85. [DOI: 10.1016/j.juro.2009.03.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Indexed: 11/27/2022]
|
50
|
Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 2009; 23:360-70. [PMID: 19074743 DOI: 10.1152/physiol.00026.2008] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome.
Collapse
Affiliation(s)
- Bret F Bessac
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|