1
|
El Husseini N, Schlisser AE, Hales BF. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos. Toxicol Sci 2016; 152:297-308. [PMID: 27208086 DOI: 10.1093/toxsci/kfw089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure.
Collapse
Affiliation(s)
- Nazem El Husseini
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Ava E Schlisser
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Barbara F Hales
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
2
|
Nisticò R, Florenzano F, Mango D, Ferraina C, Grilli M, Di Prisco S, Nobili A, Saccucci S, D'Amelio M, Morbin M, Marchi M, Mercuri NB, Davis RJ, Pittaluga A, Feligioni M. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release. Sci Rep 2015; 5:9035. [PMID: 25762148 PMCID: PMC4357012 DOI: 10.1038/srep09035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/13/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Robert Nisticò
- 1] Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Rome, 00143, Italy [2] Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
| | - Fulvio Florenzano
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Rome, 00143, Italy
| | - Dalila Mango
- 1] Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Rome, 00143, Italy [2] Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, 00143, Italy
| | - Caterina Ferraina
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Rome, 00143, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, 16148, Italy
| | - Silvia Di Prisco
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, 16148, Italy
| | - Annalisa Nobili
- 1] Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, 00143, Italy [2] University Campus Biomedico, 00100 Rome
| | - Stefania Saccucci
- Neuropathology &Neurology V - IRCCS Foundation C. Besta Milan, 20133, Italy
| | - Marcello D'Amelio
- 1] Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, 00143, Italy [2] University Campus Biomedico, 00100 Rome
| | - Michela Morbin
- Neuropathology &Neurology V - IRCCS Foundation C. Besta Milan, 20133, Italy
| | - Mario Marchi
- 1] Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, 16148, Italy [2] Center of Excellence for Biomedical Research, University of Genoa, Genoa, 16132, Italy
| | - Nicola B Mercuri
- Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, 00143, Italy
| | - Roger J Davis
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, USA
| | - Anna Pittaluga
- 1] Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, 16148, Italy [2] Center of Excellence for Biomedical Research, University of Genoa, Genoa, 16132, Italy
| | - Marco Feligioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Rome, 00143, Italy
| |
Collapse
|
3
|
Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J. p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-16. [PMID: 23906070 DOI: 10.3109/10715762.2013.821200] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
p38 MAPKs are important mediators of signal transduction that respond to a wide range of extracellular stressors such as UV radiation, osmotic shock, hypoxia, pro-inflammatory cytokines, and oxidative stress. The most abundant family member is p38α, which helps to couple cell proliferation and growth in response to certain damaging stimuli. In fact, increased proliferation and impaired differentiation are hallmarks of p38α-deficient cells. It has been reported that reactive oxygen species (ROS) play a critical role in cytokine-induced p38α activation. Under physiological conditions, p38α can function as a mediator of ROS signaling and either activate or suppress cell cycle progression depending on the activation stimulus. The interplay between cell proliferation, p38 MAPK activation, and ROS production plays an important role in hepatocytes. In fact, low levels of ROS seem to be needed to activate several signaling pathways in response to hepatectomy and to orchestrate liver regeneration. p38 MAPK works as a sensor of oxidative stress and cells that have developed mechanisms to uncouple p38 MAPK activation from oxidative stress are more likely to become tumorigenic. So far, p38α influences the redox balance, determining cell survival, terminal differentiation, proliferation, and senescence. Further studies would be necessary in order to clarify the precise role of p38 MAPK signaling as a redox therapeutical target.
Collapse
Affiliation(s)
- A M Tormos
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
4
|
Singh CK, Kumar A, Lavoie HA, Dipette DJ, Singh US. Diabetic complications in pregnancy: is resveratrol a solution? Exp Biol Med (Maywood) 2013; 238:482-90. [PMID: 23436883 DOI: 10.1177/1535370212473704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a metabolic disorder that, during pregnancy, may affect fetal development. Fetal outcome depends on the type of diabetes present, the concentration of blood glucose and the extent of fetal exposure to elevated or frequently fluctuating glucose concentrations. The result of some diabetic pregnancies will be embryonic developmental abnormalities, a condition referred to as diabetic embryopathy. Tight glycemic control in type 1 diabetes during pregnancy using insulin therapy together with folic acid supplementation are partially able to prevent diabetic embryopathy; however, the protection is not complete and additional interventions are needed. Resveratrol, a polyphenol found largely in the skins of red grapes, is known to have antidiabetic action and is in clinical trials for the treatment of diabetes, insulin resistance, obesity and metabolic syndrome. Studies of resveratrol in a rodent model of diabetic embryopathy reveal that it significantly improves the embryonic outcome in terms of diminishing developmental abnormalities. Improvements in maternal and embryonic outcomes observed in rodent models may arise from resveratrol's antioxidative potential, antidiabetic action and antidyslipidemic nature. Whether resveratrol will have similar actions in human diabetic pregnancy is unknown. Here, we review the potential therapeutic use of resveratrol in diabetes and diabetic pregnancy.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
5
|
Singh CK, Kumar A, Lavoie HA, Dipette DJ, Singh US. Diabetic complications in pregnancy: is resveratrol a solution? EXPERIMENTAL BIOLOGY AND MEDICINE (MAYWOOD, N.J.) 2013. [PMID: 23436883 DOI: 10.1177/1535370212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetes is a metabolic disorder that, during pregnancy, may affect fetal development. Fetal outcome depends on the type of diabetes present, the concentration of blood glucose and the extent of fetal exposure to elevated or frequently fluctuating glucose concentrations. The result of some diabetic pregnancies will be embryonic developmental abnormalities, a condition referred to as diabetic embryopathy. Tight glycemic control in type 1 diabetes during pregnancy using insulin therapy together with folic acid supplementation are partially able to prevent diabetic embryopathy; however, the protection is not complete and additional interventions are needed. Resveratrol, a polyphenol found largely in the skins of red grapes, is known to have antidiabetic action and is in clinical trials for the treatment of diabetes, insulin resistance, obesity and metabolic syndrome. Studies of resveratrol in a rodent model of diabetic embryopathy reveal that it significantly improves the embryonic outcome in terms of diminishing developmental abnormalities. Improvements in maternal and embryonic outcomes observed in rodent models may arise from resveratrol's antioxidative potential, antidiabetic action and antidyslipidemic nature. Whether resveratrol will have similar actions in human diabetic pregnancy is unknown. Here, we review the potential therapeutic use of resveratrol in diabetes and diabetic pregnancy.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
6
|
Banh S, Hales BF. Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos. Toxicol Sci 2013; 133:298-308. [PMID: 23492809 PMCID: PMC3663560 DOI: 10.1093/toxsci/kft069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydroxyurea (HU) is commonly used to treat myeloproliferative diseases and sickle cell anemia. The administration of HU to gestation day 9 CD1 mice causes predominantly hindlimb, tail, and neural tube defects. HU induces oxidative stress and p38 mitogen-activated protein kinase (MAPK) signaling in embryos. HU also inactivates ribonucleotide reductase, leading to DNA replication stress and DNA damage response signaling. We hypothesize that HU exposure induces p38 MAPK activation and DNA damage response signaling during organogenesis preferentially in malformation-sensitive tissues. HU treatment (400 or 600mg/kg) induced the activation of MEK3/6, upstream MAP2K3 kinases, within 30min; phospho-MEK3/6 immunoreactivity was increased throughout the embryo. Activation of the downstream p38 MAPK peaked 3h post-HU treatment. At this time, phospho-p38 MAPK immunoreactivity was enhanced in the cytoplasm and nucleus of cells in the rostral and caudal neuroepithelium and neural tube; significant increases in p38 MAPK signaling were not observed in the somites or heart. Interestingly, the DNA damage response, as assessed by the formation of γH2AX foci, was increased at 3h in HU-exposed embryos in all tissues examined, including the somites and heart. Increases in pyknotic nuclei and cell fragmentation were observed in all tissues except the heart, an organ that is relatively resistant to HU-induced malformations. Thus, although HU induces a widespread DNA damage response, the activation of p38 MAPK is localized to the rostral and caudal neuroepithelium and neural tube, suggesting that p38 MAPK pathways may play a role in mediating the specific malformations observed after HU exposure.
Collapse
Affiliation(s)
- Serena Banh
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | | |
Collapse
|
7
|
Stauber RH, Knauer SK, Habtemichael N, Bier C, Unruhe B, Weisheit S, Spange S, Nonnenmacher F, Fetz V, Ginter T, Reichardt S, Liebmann C, Schneider G, Krämer OH. A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget 2012; 3:31-43. [PMID: 22289787 PMCID: PMC3292890 DOI: 10.18632/oncotarget.430] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family protein BIM, independent of wild-type p53 signaling and in the absence of increased expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from VPA/HU. Also, significantly elevated BIM levels (p<0.01) were detectable in the apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), underlining BIM's clinical relevance. Importantly, VPA/HU treatment additionally reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft mouse model, VPA/HU efficiently blocked tumor growth (P<0.001) correlating with BIM induction and EGFR downregulation. We provide a molecular rationale for the potent anti-cancer activities of this drug combination. Our data suggest its exploitation as a potential strategy for the treatment of HNSCC and other tumor entities characterized by therapy resistance linked to dysregulated EGFR activation.
Collapse
Affiliation(s)
- Roland H Stauber
- Molecular and Cellular Oncology/Mainz Screening Center, University Hospital of Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Singh CK, Kumar A, LaVoie HA, DiPette DJ, Singh US. Resveratrol prevents impairment in activation of retinoic acid receptors and MAP kinases in the embryos of a rodent model of diabetic embryopathy. Reprod Sci 2012; 19:949-61. [PMID: 22534330 DOI: 10.1177/1933719112438972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions. We found downregulation of RARs and RXRs expressions as well as their DNA-binding activities in the embryos exhibiting developmental delays due to diabetes. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased and phosphorylation of c-Jun N-terminal kinase (JNK) 1/2 and p38 was increased. Interestingly, embryos of diabetic rats treated with RSV showed normalized patterns of RARs, RXRs, neuronal markers, and ERK, JNK and p38 phosphorylation.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
9
|
Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J Reprod Immunol 2011; 88:176-84. [PMID: 21236496 DOI: 10.1016/j.jri.2010.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/03/2010] [Accepted: 11/07/2010] [Indexed: 11/20/2022]
Abstract
The major cause of spontaneous preterm birth (sPTB) at less than 32 weeks of gestation is intrauterine inflammation as a consequence of colonisation of the gestational membranes by pathogenic microorganisms which trigger activation of the local innate immune system. This results in release of inflammatory mediators, leukocytosis (chorioamnionitis), apoptosis, membrane rupture, cervical ripening and onset of uterine contractions. Recent PCR evidence suggests that in the majority of cases of inflammation-driven preterm birth, microorganisms are present in the amniotic fluid, but these are not always cultured by standard techniques. The nature of the organism and its cell wall constituents, residence time in utero, microbial load, route of infection and extent of tissue penetration are all factors which can modulate the timing and magnitude of the inflammatory response and likelihood of progression to sPTB. Administration of anti-inflammatory drugs could be a viable therapeutic option to prevent sPTB and improve fetal outcomes in women at risk of intrauterine inflammation. Preventing fetal inflammation via administration of placenta-permeable drugs could also have significant perinatal benefits in addition to those related to extension of gestational age, as a fetal inflammatory response is associated with a range of significant morbidities. A number of potential drugs are available, effective against different aspects of the inflammatory process, although the pathways actually activated in spontaneous preterm labour have yet to be confirmed. Several pharmacological candidates are discussed, together with clinical and toxicological considerations associated with administration of anti-inflammatory agents in pregnancy.
Collapse
|
10
|
Webber JL, Tooze SA. New insights into the function of Atg9. FEBS Lett 2010; 584:1319-26. [PMID: 20083107 DOI: 10.1016/j.febslet.2010.01.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
Autophagy is a lysosomal degradation pathway that is essential for cellular homeostasis. Identification of more than 30 autophagy related proteins including a multi-spanning membrane protein, Atg9, has increased our understanding of the molecular mechanisms involved in autophagy. Atg9 is required for autophagy in several eukaryotic organisms although its function is unknown. Recently, we identified a novel interacting partner of mAtg9, p38 MAPK interacting protein, p38IP. We summarise recent data on the role of Atg9 trafficking in yeast and mammalian autophagy and discuss the role of p38IP and p38 MAPK in regulation of mAtg9 trafficking and autophagy.
Collapse
Affiliation(s)
- Jemma L Webber
- London Research Institute, Cancer Research UK, London, United Kingdom
| | | |
Collapse
|
11
|
Li JY, Chen X, Hosseini Moghaddam SH, Chen M, Wei H, Zhong BX. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. INSECT MOLECULAR BIOLOGY 2009; 18:649-660. [PMID: 19754742 DOI: 10.1111/j.1365-2583.2009.00903.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The shotgun approach has gained considerable acknowledgement in recent years as a dominant strategy in proteomics. We observed a dramatic increase of specific protein spots in two-dimensional electrophoresis (2-DE) gels of the silkworm (Bombyx mori) embryo at labrum appearance, a characteristic stage during embryonic development of silkworm which is involved with temperature increase by silkworm raiser. We employed shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to analyse the proteome of B. mori embryos at this stage. A total of 2168 proteins were identified with an in-house database. Approximately 47% of them had isoelectric point (pI) values distributed theoretically in the range pI 5-7 and approximately 60% of them had molecular weights of 15-45 kDa. Furthermore, 111 proteins had an pI greater than 10 and were difficult to separate by 2-DE. Many important functional proteins related to embryonic development, stress response, DNA transcription/translation, cell growth, proliferation and differentiation, organogenesis and reproduction were identified. Among them proteins related to nervous system development were noticeable. All known heat shock proteins (HSPs) were detected in this developmental stage of B. mori embryo. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed energetic metabolism at this stage. These results were expected to provide more information for proteomic monitoring of the insect embryo and better understanding of the spatiotemporal expression of genes during embryonic developmental processes.
Collapse
Affiliation(s)
- J-Y Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China
| | | | | | | | | | | |
Collapse
|
12
|
Damarla M, Hasan E, Boueiz A, Le A, Pae HH, Montouchet C, Kolb T, Simms T, Myers A, Kayyali US, Gaestel M, Peng X, Reddy SP, Damico R, Hassoun PM. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. PLoS One 2009; 4:e4600. [PMID: 19240800 PMCID: PMC2643011 DOI: 10.1371/journal.pone.0004600] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 12/19/2008] [Indexed: 01/11/2023] Open
Abstract
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2(-/-) mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2(-/-) mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HV(T) MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.
Collapse
Affiliation(s)
- Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emile Hasan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Adel Boueiz
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anne Le
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hyun Hae Pae
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calypso Montouchet
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Kolb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tiffany Simms
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allen Myers
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Usamah S. Kayyali
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Gaestel
- Department of Biochemistry, Medical School of Hannover, Hannover, Germany
| | - Xinqi Peng
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sekhar P. Reddy
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rachel Damico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul M. Hassoun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|