1
|
Zheng J, Ding J, Liao M, Qiu Z, Yuan Q, Mai W, Dai Y, Zhang H, Wu H, Wang Y, Liao Y, Chen X, Cheng X. Immunotherapy against angiotensin II receptor ameliorated insulin resistance in a leptin receptor-dependent manner. FASEB J 2020; 35:e21157. [PMID: 33155736 DOI: 10.1096/fj.202000300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) signaling pathway is reported to modulate glucose metabolism. Targeting AT1R, our group invented ATRQβ-001 vaccine, a novel immunotherapeutic strategy to block the activation of AT1R. Here, we evaluated the therapeutic efficacy of ATRQβ-001 vaccine in insulin resistance, and investigated the mechanism. Our results showed that ATRQβ-001 vaccine and specific monoclonal antibody against epitope ATR-001 (McAb-ATR) decreased fasting serum insulin concentration and improved glucose and insulin tolerance in ob/ob mice. These beneficial effects were verified in high-fat diet-induced obese mice. McAb-ATR activated insulin signaling in skeletal muscle and insulin-resistant C2C12 myotubes without affecting liver or white adipose tissue of ob/ob mice. Mechanistically, the favorable impact of McAb-ATR on insulin resistance was abolished in db/db mice and in C2C12 myotubes with leptin receptor knockdown. AT1R knockdown also eradicated the effects of McAb-ATR in C2C12 myotubes. Furthermore, McAb-ATR treatment was able to activate the leptin receptor-mediated JAK2/STAT3 signaling in skeletal muscle of ob/ob mice and C2C12 myotubes. Additionally, angiotensin II downregulated the leptin signaling in skeletal muscle of ob/ob and diet-induced obese mice. We demonstrated that ATRQβ-001 vaccine and McAb-ATR improved whole-body insulin resistance and regulated glucose metabolism in skeletal muscle in a leptin receptor-dependent manner. Our data suggest that immunotherapy targeting AT1R is a novel strategy for treating insulin resistance.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyang Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchen Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuqian Mai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongrong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
3
|
Deguchi K, Kurata T, Fukui Y, Liu W, Yun Z, Omote Y, Sato K, Kono S, Hishikawa N, Yamashita T, Abe K. Long-term Amelioration of Telmisartan on Metabolic Syndrome-related Molecules in Stroke-resistant Spontaneously Hypertensive Rat after Transient Middle Cerebral Artery Occlusion. J Stroke Cerebrovasc Dis 2014; 23:2646-2653. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/03/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023] Open
|
4
|
Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Yamashita T, Hishikawa N, Matsuzono K, Ikeda Y, Kamiya T, Abe K. Long-term Effect of Telmisartan on Alzheimer’s Amyloid Genesis in SHR-SR After tMCAO. Transl Stroke Res 2014; 6:107-15. [DOI: 10.1007/s12975-013-0321-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
|
5
|
Zhao ZQ, Luo R, Li LY, Tian FS, Zheng XL, Xiong HL, Sun LT. Angiotensin II Receptor Blocker Telmisartan Prevents New-Onset Diabetes in Pre-Diabetes OLETF Rats on a High-Fat Diet: Evidence of Anti-Diabetes Action. Can J Diabetes 2013; 37:156-68. [PMID: 24070838 DOI: 10.1016/j.jcjd.2013.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/15/2012] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
|
6
|
Wang J, Rong X, Li W, Yang Y, Yamahara J, Li Y. Rhodiola crenulata root ameliorates derangements of glucose and lipid metabolism in a rat model of the metabolic syndrome and type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:782-788. [PMID: 22683493 DOI: 10.1016/j.jep.2012.05.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola species are traditionally used as tonics and stimulants to treat asthenia, suggesting their possible regulatory effect on energy metabolism. Clinical trials have demonstrated their glucose-lowering effect in type 2 diabetes. AIM OF THE STUDY To examine the effects of Rhodiola on glucose and lipid metabolism in the metabolic syndrome and type 2 diabetes. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) rats were treated with Rhodiola crenulata root (RCR) powder (100 and 500 mg/kg, by gavage, once daily for 4 weeks). In addition, the effects of RCR on sucrose-induced acute hyperglycemia in mice and olive oil-induced hypertriglyceridemia in rats were also examined. Biochemical variables were determined enzymatically or by ELISA. RESULTS In ZDF rats, RCR treatment decreased the increased plasma insulin and triglyceride concentrations at baseline, the index of the homeostasis model assessment of insulin resistance (HOMA-IR) and excessive hepatic triglyceride accumulation. This treatment also inhibited abnormal increases in plasma glucose and insulin concentrations during oral glucose tolerance test. Furthermore, RCR reversed the increased adipose insulin resistance index, and accelerated the decline of plasma concentrations of non-esterified fatty acids after exogenous glucose stimulation. However, RCR minimally affected sucrose-induced acute hyperglycemia in mice and olive oil-induced acute hypertriglyceridemia in rats. CONCLUSIONS The present results demonstrate that RCR treatment improves metabolic derangements in animal model of the metabolic syndrome and type 2 diabetes. Our findings may provide new pharmacological basis of therapeutics for the adaptogenic plants to treat metabolic derangements-associated disorders, such as asthenia.
Collapse
Affiliation(s)
- Jianwei Wang
- Faculty of Basic Medical Sciences, Chongqing Medical University, China
| | | | | | | | | | | |
Collapse
|
7
|
Miesel A, Müller-Fielitz H, Jöhren O, Vogt FM, Raasch W. Double blockade of angiotensin II (AT(1) )-receptors and ACE does not improve weight gain and glucose homeostasis better than single-drug treatments in obese rats. Br J Pharmacol 2012; 165:2721-35. [PMID: 22014027 DOI: 10.1111/j.1476-5381.2011.01726.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Combination therapies are becoming increasingly important for the treatment of high blood pressure. Little is known about whether double blockade of angiotensin II (AT(1) ) receptors and angiotensin-converting enzyme (ACE) exert synergistic metabolic effects. EXPERIMENTAL APPROACH Spontaneously hypertensive rats were allowed to choose between palatable chocolate bars and standard chow and were simultaneously treated with the AT(1) blocker telmisartan (8 mg·kg(bw) (-1) ·day(-1) ), the ACE inhibitor ramipril (4 mg·kg(bw) (-1) ·day(-1) ) or a combination of the two (8 + 4 mg·kg(bw) (-1) ·day(-1) ) for 12 weeks. KEY RESULTS Although food-dependent energy intake was increased by telmisartan and telmisartan + ramipril compared with ramipril or controls, body weight gain, abundance of fat and plasma leptin levels were decreased. Increased insulin levels in response to an oral glucose tolerance test were comparably attenuated by telmisartan and telmisartan + ramipril, but not by ramipril. During an insulin tolerance test, glucose utilization was equally as effectively improved by telmisartan and telmisartan + ramipril. In response to a stress test, ACTH, corticosterone and glucose increased in controls. These stress reactions were attenuated by telmisartan and telmisartan + ramipril. CONCLUSIONS AND IMPLICATIONS The combination of telmisartan + ramipril was no more efficacious in regulating body weight and glucose homeostasis than telmisartan alone. However, telmisartan was more effective than ramipril in improving metabolic parameters and in reducing body weight. The association between the decrease in stress responses and the diminished glucose levels after stress supports our hypothesis that the ability of telmisartan, as an AT(1) receptor blocker, to alleviate stress reactions may contribute to its hypoglycaemic actions.
Collapse
Affiliation(s)
- Anja Miesel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
8
|
Wang J, Rong X, Li W, Yamahara J, Li Y. Salacia oblonga ameliorates hypertriglyceridemia and excessive ectopic fat accumulation in laying hens. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:221-227. [PMID: 22561158 DOI: 10.1016/j.jep.2012.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/17/2012] [Accepted: 04/25/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salacia oblonga root (SOR) is an Ayurvedic medicine for obesity and diabetes, those are associated with glucose and lipid metabolism. AIM OF THE STUDY SOR has been demonstrated previously to improve glucose and lipid metabolism in animal models of obesity and diabetes and to be a peroxisome proliferator-activated receptor-alpha activator. However, the anti-obesogenic and anti-diabetic mechanisms of SOR are still not largely understood. Here, we investigated the effects of SOR on lipid metabolism using laying hen, a unique animal model with a very high rate of triglyceride synthesis in the liver. MATERIALS AND METHODS Laying hens and preadolescent pullets were treated with the layer ration containing 0%, 0.5%, or 1% SOR water extract for 4 weeks. Biochemical variables were determined enzymatically. RESULTS Laying hens showed much higher fasted triglyceride concentrations (increased by 5-13 folds) in plasma, liver, skeletal muscle and heart than pullets. 1% SOR extract treatment inhibited body weight increase without affecting food intake. Importantly, this treatment substantially attenuated hypertriglyceridemia and inhibited increases in triglyceride contents in the non-adipose tissues. However, SOR extract did not induce change in plasma glucose concentration. Moreover, SOR extract did not alter all variables in pullets. CONCLUSIONS These results demonstrate that SOR ameliorates hypertriglyceridemia and excessive ectopic fat accumulation in laying hens. These findings suggest that the triglyceride-lowering property is one of the primary effects of SOR, possibly via hepatic mechanisms.
Collapse
Affiliation(s)
- Jianwei Wang
- Division of Metabolism, Faculty of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | | | | | | | | |
Collapse
|
9
|
Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress. Behav Brain Res 2012; 232:84-92. [PMID: 22503782 DOI: 10.1016/j.bbr.2012.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Centrally acting Angiotensin II AT(1) receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 μg/kg) with or without 3 days of pretreatment with the ARB candesartan (1mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ(1) receptors and reduced mRNA expression of the GABA(A) receptor γ(2) subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ(1) receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ(1) binding, and decreased γ(2) subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF(1) receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF(2) receptor binding was undetectable, but CRF(2) mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ(1) receptor expression; and that the stress-induced BZ(1) receptor expression is under the control of AT(1) receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ(1) receptors.
Collapse
|
10
|
Müller-Fielitz H, Landolt J, Heidbreder M, Werth S, Vogt FM, Jöhren O, Raasch W. Improved insulin sensitivity after long-term treatment with AT1 blockers is not associated with PPARγ target gene regulation. Endocrinology 2012; 153:1103-15. [PMID: 22253423 DOI: 10.1210/en.2011-0183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In both cell culture experiments and in vivo studies, a number of angiotensin II type 1 (AT(1)) receptor antagonists activated the peroxisome proliferator-activated receptor-γ (PPARγ). This mechanism has been discussed to be, at least in part, responsible for the improvement in glucose metabolism observed in animal studies and clinical trials. To investigate whether the PPARγ-dependent mechanism may represent a valid target for chronic therapy, spontaneously hypertensive rats (SHR) were fed either with a cafeteria diet (CD) or standard chow. CD-fed SHR were simultaneously treated with either telmisartan (TEL; 8 mg/kg(body weight)· d) or candesartan (CAND; 10 mg/kg(body weight)· d) for 3 months because TEL, but not CAND, has been demonstrated to be a strong activator of PPARγ. After 3 months, chow- and CD-fed controls were hypertensive, whereas TEL and CAND treatment resulted in normalized blood pressures in SHR. Body weight and the amount of abdominal fat (determined by magnetic resonance imaging) were higher in CD- than in chow-fed SHR. After TEL or CAND, body weight, abdominal fat quantity, and adipocyte size returned to normal. In glucose tolerance tests, the glucose responses were comparable in the TEL- and CAND-treated SHR and obese controls, whereas the insulin response was almost halved by AT(1) blockade. Expression of PPARγ target genes aP2, FAT CD36, FASn, and PEPCK remained unaltered at the protein level in visceral fat after TEL and CAND compared with the CD-fed controls. Because the expression of examined PPARγ target genes was not affected, we concluded that improved insulin sensitivity after long-term treatment with AT(1) blockers was not related to a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Younis F, Oron Y, Limor R, Stern N, Rosenthal T. Prophylactic treatment with telmisartan induces tissue-specific gene modulation favoring normal glucose homeostasis in Cohen-Rosenthal diabetic hypertensive rats. Metabolism 2012; 61:164-74. [PMID: 21820685 DOI: 10.1016/j.metabol.2011.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/31/2011] [Accepted: 06/09/2011] [Indexed: 01/22/2023]
Abstract
The objectives were to assess the potential of long-term prophylactic administration of telmisartan, an angiotensin II receptor antagonist and a partial peroxisome proliferator activator receptor (PPAR)γ agonist, in preventing the development of hypertension and hyperglycemia and to demonstrate the alteration in gene expression associated with the development of hyperglycemia and insulin resistance in Cohen-Rosenthal diabetic hypertensive rat, a unique model of hypertension and type 2 diabetes mellitus comorbidity. Cohen-Rosenthal diabetic hypertensive rats were continuously treated with telmisartan (3 mg/[kg d]) starting at age 6 to 8 weeks before developing hypertension or diabetes. Weight changes, blood pressure, blood insulin, adiponectin, glucose tolerance, and insulin sensitivity were monitored. Fat, liver, and muscle messenger RNAs were examined for the expression of genes potentially involved in the onset of insulin resistance. In addition to the expected antihypertensive effect of prophylactic telmisartan, diabetes was blunted, evidenced at the end of the study by a significantly lower glucose level. This was accompanied by improved glucose tolerance, increased sensitivity to insulin, reduction in fasting insulin levels and homeostasis model assessment index, as well as an increase in serum adiponectin. Telmisartan also prevented the increase in serum triglycerides and the associated appearance of lipid droplets in the liver. Diabetes induced tissue-specific changes in messenger RNAs expression of the following selected genes, which were restored by telmisartan treatment: PPARγ, PPARδ, PPARγ coactivator 1α, adiponectin, adiponectin receptor 1, adiponectin receptor 2, phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, adenosine monophosphate kinase, and glucose translocator 4. Telmisartan blunted the development of hypertension, insulin resistance, and diabetes in prediabetic Cohen-Rosenthal diabetic hypertensive rats through pleiotropic activity, involving specific gene regulation of target organs.
Collapse
Affiliation(s)
- Firas Younis
- Department of Physiology and Pharmacology, Hypertension Research Unit, Sackler School of Medicine, Tel Aviv University 69978, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
12
|
Zhao M, Li Y, Wang J, Ebihara K, Rong X, Hosoda K, Tomita T, Nakao K. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats. Diabetes Obes Metab 2011; 13:1123-9. [PMID: 21749604 DOI: 10.1111/j.1463-1326.2011.01471.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Hypertension often coexists with insulin resistance. However, most metabolic effects of the antihypertensive agents have been investigated in nomotensive animals, in which different conclusions may arise. We investigated the metabolic effects of the new angiotensin II type 1 receptor blocker azilsartan using the obese Koletsky rats superimposed on the background of the spontaneously hypertensive rats. METHODS Male Koletsky rats were treated with azilsartan (2 mg/kg/day) over 3 weeks. Blood pressure was measured by tail-cuff. Blood biochemical and hormonal parameters were determined by enzymatic or ELISA methods. Gene expression was assessed by RT-PCR. RESULTS In Koletsky rats, azilsartan treatment lowered blood pressure, basal plasma insulin concentration and the homeostasis model assessment of insulin resistance index, and inhibited over-increase of plasma glucose and insulin concentrations during oral glucose tolerance test. These effects were accompanied by decreases in both food intake and body weight (BW) increase. Although two treatments showed the same effect on BW gain, insulin sensitivity was higher after azilsartan treatment than pair-feeding. Azilsartan neither affected plasma concentrations of triglyceride and free fatty acids, nor increased adipose mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and its target genes such as adiponectin, aP2. In addition, azilsartan downregulated 11β-hydroxysteroid dehydrogenase type 1 expression. CONCLUSIONS These results show the insulin-sensitizing effect of azilsartan in obese Koletsky rats. This effect is independent of decreases in food intake and BW increase or of the activation of adipose PPARγ. Our findings indicate the possible usefulness of azilsartan in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- M Zhao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rong X, Li Y, Ebihara K, Zhao M, Naowaboot J, Kusakabe T, Kuwahara K, Murray M, Nakao K. Angiotensin II type 1 receptor-independent beneficial effects of telmisartan on dietary-induced obesity, insulin resistance and fatty liver in mice. Diabetologia 2010; 53:1727-31. [PMID: 20390403 DOI: 10.1007/s00125-010-1744-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Evidence suggests that telmisartan, an angiotensin II type 1 receptor (AT1) blocker and peroxisome proliferator-activated receptor-gamma partial agonist, has beneficial actions that limit development of the metabolic syndrome and diabetes. However, the role played by AT1 inhibition in metabolic effects elicited by telmisartan remains uncertain. Here we isolated the metabolic effects of telmisartan from AT1 antagonism. METHODS Male At1a (also known as Agtr1a)-deficient mice were fed a standard diet or 60% high-fat diet; those on high-fat diet were co-administered telmisartan (3 mg kg(-1) day(-1) by oral gavage) or vehicle for 12 weeks. RESULTS In At1a-null mice, telmisartan prevented high-fat-diet-induced increases in (1) body weight, epididymal and inguinal white adipose tissue weight, adipocyte size and plasma leptin concentration; (2) plasma glucose and insulin concentrations and HOMA index; and (3) liver weight and triacylglycerol content. Insulin tolerance testing also indicated that telmisartan improved the high-fat-diet-induced reduction of glucose-lowering by insulin. CONCLUSIONS/INTERPRETATION The present findings demonstrate beneficial, AT1-independent effects of the AT1 blocker telmisartan on dietary-induced obesity, insulin resistance and fatty liver in animals.
Collapse
MESH Headings
- Adipocytes/pathology
- Adipose Tissue, White/pathology
- Angiotensin II Type 1 Receptor Blockers
- Animals
- Benzimidazoles/administration & dosage
- Benzoates/administration & dosage
- Blood Glucose/analysis
- Cell Size
- Diet, High-Fat
- Fatty Liver/drug therapy
- Fatty Liver/pathology
- Insulin/blood
- Insulin Resistance
- Leptin/blood
- Lipids/analysis
- Liver/chemistry
- Liver/pathology
- Male
- Metabolic Syndrome/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/chemistry
- Obesity, Abdominal/drug therapy
- Obesity, Abdominal/etiology
- Organ Size
- PPAR gamma/agonists
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/physiology
- Telmisartan
- Triglycerides/analysis
Collapse
Affiliation(s)
- X Rong
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages. Mediators Inflamm 2010; 2010:219583. [PMID: 20508742 PMCID: PMC2874923 DOI: 10.1155/2010/219583] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/16/2010] [Indexed: 02/07/2023] Open
Abstract
Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.
Collapse
|