1
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
2
|
Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019; 9:12706. [PMID: 31481727 PMCID: PMC6722123 DOI: 10.1038/s41598-019-48971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and acquired loss-of-function defect of the cystic fibrosis transmembrane conductance regulator (CFTR) compromise airway surface liquid homeostasis and mucociliary clearance (MCC), culminating in recurrent lung inflammation/infection. While chronic cigarette smoke (CS), CS extract (CSE; water-soluble compounds) and CS condensate (CSC; particulate, organic fraction) exposure inhibit CFTR activity at transcriptional, biochemical, and functional levels, the acute impact of CSC remains incompletely understood. We report that CSC transiently activates CFTR chloride secretion in airway epithelia. The comparable CFTR phospho-occupancy after CSC- and forskolin-exposure, determined by affinity-enriched tandem mass spectrometry and pharmacology, suggest that localised cAMP-dependent protein kinase (PKA) stimulation by CSC causes the channel opening. Due to the inhibition of the MRP4/ABCC4, a cAMP-exporter confined to the CFTR macromolecular signalling-complex, PKA activation is accomplished by the subcompartmentalised elevation of cytosolic cAMP. In line, MRP4 inhibition results in CFTR activation and phospho-occupancy similar to that by forskolin. In contrast, acute CSC exposure reversibly inhibits the phosphorylated CFTR both in vivo and in phospholipid bilayers, without altering its cell surface density and phospho-occupancy. We propose that components of CSC elicit both a transient protective CFTR activation, as well as subsequent channel block in airway epithelia, contributing to the subacute MCC defect in acquired CF lung diseases.
Collapse
|
3
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
4
|
Wong FH, AbuArish A, Matthes E, Turner MJ, Greene LE, Cloutier A, Robert R, Thomas DY, Cosa G, Cantin AM, Hanrahan JW. Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. Am J Physiol Cell Physiol 2018; 314:C118-C134. [PMID: 28978522 PMCID: PMC5866379 DOI: 10.1152/ajpcell.00099.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022]
Abstract
Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca2+ store-operated cAMP signaling. The response was absent in cells expressing the most common disease-causing mutant F508del-CFTR. In addition to the initial secretion, prolonged exposure of non-CF bronchial epithelial cells to low levels of smoke also caused a gradual decline in CFTR functional expression. F508del-CFTR channels that had been rescued by the CF drug combination VX-809 (lumacaftor) + VX-770 (ivacaftor) were more sensitive to this downregulation than wild-type CFTR. The results suggest that CFTR-mediated secretion during acute cigarette smoke exposure initially protects the airway epithelium while prolonged exposure reduces CFTR functional expression and reduces the efficacy of CF drugs.
Collapse
Affiliation(s)
- Francis H Wong
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Asmahan AbuArish
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Mark J Turner
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Lana E Greene
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - Alexandre Cloutier
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - Renaud Robert
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - André M Cantin
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - John W Hanrahan
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Research Institute of McGill Univ. Hospital Centre , Montreal, Quebec , Canada
| |
Collapse
|
5
|
Ivonnet P, Unwalla H, Salathe M, Conner GE. Soluble adenylyl cyclase mediates hydrogen peroxide-induced changes in epithelial barrier function. Respir Res 2016; 17:15. [PMID: 26857816 PMCID: PMC4746823 DOI: 10.1186/s12931-016-0329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elevated H2O2 levels are associated with inflammatory diseases and H2O2 exposure is known to disrupt epithelial barrier function, leading to increased permeability and decreased electrical resistance. In normal human bronchial epithelial (NHBE) cells, fully differentiated at the air liquid interface (ALI), H2O2 activates an autocrine prostaglandin pathway that stimulates transmembrane adenylyl cyclase (tmAC) as well as soluble adenylyl cyclase (sAC), but the role of this autocrine pathway in H2O2-mediated barrier disruption is not entirely clear. METHODS To further characterize the mechanism of H2O2-induced barrier disruption, NHBE cultures were treated with H2O2 and evaluated for changes in transepithelial resistance and mannitol permeability using agonist and inhibitors to dissect the pathway. RESULTS A short (<10 min) H2O2 treatment was sufficient to induce resistance and permeability changes that occurred 40 min to 1 h later and the changes were partially sensitive to EP1 but not EP4 receptor antagonists. EP1 receptors were localized to the apical compartment of NHBE. Resistance and permeability changes were sensitive to inhibition of sAC but not tmAC and were partially blocked by PKA inhibition. Pretreatment with a PLC inhibitor or an IP3 receptor antagonist reduced changes in resistance and permeability suggesting activation of sAC occurred through increased intracellular calcium. CONCLUSION The data support an important role for prostaglandin activation of sAC and PKA in H2O2-induced barrier disruption.
Collapse
Affiliation(s)
- Pedro Ivonnet
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, 1600 NW 10th Ave, Miami, 33136, FL, USA.
| | - Hoshang Unwalla
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, 1600 NW 10th Ave, Miami, 33136, FL, USA.
| | - Gregory E Conner
- Department of Cell Biology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave, Miami, 33136, FL, USA.
| |
Collapse
|
6
|
Mimetic biomembrane–AuNPs–graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis study. Talanta 2015; 143:438-441. [DOI: 10.1016/j.talanta.2015.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
|
7
|
Ivonnet P, Salathe M, Conner GE. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling. Br J Pharmacol 2014; 172:173-84. [PMID: 25220136 DOI: 10.1111/bph.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE H2 O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2 O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion. This study investigated signalling downstream of the receptors activated by H2 O2 . EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2 O2 , an EP4 receptor agonist or β2 -adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca(2+) ]I ) changes were followed by microscopy using fura-2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2 O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2 O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca(2+) ]i via Ca(2+) store release (and not entry). Increased [Ca(2+) ]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3 (-) ]. Ca(2+) -activated apical KCa 1.1 channels and cAMP-activated basolateral KV 7.1 channels contributed to H2 O2 -stimulated anion currents. A similar Epac-mediated pathway was seen following β2 -adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2 O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca(2+) crosstalk to activate sAC. The Epac-mediated Ca(2+) signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli.
Collapse
Affiliation(s)
- P Ivonnet
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida, USA
| | | | | |
Collapse
|
8
|
Conner GE, Ivonnet P, Gelin M, Whitney P, Salathe M. H2O2 stimulates cystic fibrosis transmembrane conductance regulator through an autocrine prostaglandin pathway, using multidrug-resistant protein-4. Am J Respir Cell Mol Biol 2014; 49:672-9. [PMID: 23742099 DOI: 10.1165/rcmb.2013-0156oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) activity is essential for the maintenance of airway surface liquid depth, and therefore mucociliary clearance. Reactive oxygen species, increased during inflammatory airway diseases, alter CFTR activity. Here, H2O2 levels in the surface liquid of normal human bronchial epithelial cultures differentiated at the air-liquid interface were estimated, and H2O2-mediated changes in CFTR activity were examined. In Ussing chambers, H2O2-induced anion currents were sensitive to the CFTR inhibitors CFTRinh172 and GlyH-101. These currents were absent in cells from patients with cystic fibrosis. Responses to greater than 500 μM H2O2 were transient. Cyclooxygenase inhibitors blocked the H2O2 response, as did EP1 and EP4 receptor antagonists. A multidrug-resistant protein (MRP) inhibitor and short hairpin RNA directed against MRP4 blocked H2O2 responses. EP1 and EP4 agonists mimicked H2O2 in both control and MRP4 knockdown cells. Thus, H2O2 activates the synthesis, export, and binding of prostanoids via EP4 and, interestingly, EP1 receptors in normal, differentiated human airway epithelial cells to activate cyclic adenosine monophosphate pathways that in turn activate CFTR channels in the apical membrane.
Collapse
Affiliation(s)
- Gregory E Conner
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, and
| | | | | | | | | |
Collapse
|
9
|
Eicosanoid biosynthesis during mucociliary and mucous metaplastic differentiation of bronchial epithelial cells. Prostaglandins Other Lipid Mediat 2013; 106:116-23. [PMID: 23742951 DOI: 10.1016/j.prostaglandins.2013.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/15/2013] [Accepted: 05/06/2013] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to examine the profile of eicosanoids secreted by human bronchial epithelial cells (HBEC) during their in vitro differentiation toward mucociliary or mucous metaplastic phenotype. Eicosanoids were measured in supernatants by mass spectrometry, and corresponding gene expression by real-time PCR. Primary HBEC produced mainly prostaglandins (PGE2, PGD2) and epoxides (e.g. 14,15-EET), but during further mucociliary differentiation we observed a gradual increase in secretion of lipoxygenase derived HETEs. Treatment with IL-13 and IL-4 induced mucous metaplasia and resulted in downregulation of PG pathway, and potent induction of 15-lipoxygenase (marked release of 15-HETE). The deficiency in PG production sustained during long term culture of mucous metaplastic epithelia. In conclusions, Th2-type cytokines induce changes in eicosanoid metabolism of airway epithelial cells, resulting in an immense induction of 15-lipoxygenase pathway, and inhibition of PG pathways. Deficient production of immunomodulatory PGs may promote chronic inflammation and airway remodeling.
Collapse
|