1
|
Levick SP. Histamine receptors in heart failure. Heart Fail Rev 2021; 27:1355-1372. [PMID: 34622365 DOI: 10.1007/s10741-021-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
The biogenic amine, histamine, is found predominantly in mast cells, as well as specific histaminergic neurons. Histamine exerts its many and varied actions via four G-protein-coupled receptors numbered one through four. Histamine has multiple effects on cardiac physiology, mainly via the histamine 1 and 2 receptors, which on a simplified level have opposing effects on heart rate, force of contraction, and coronary vasculature function. In heart failure, the actions of the histamine receptors are complex, the histamine 1 receptor appears to have detrimental actions predominantly in the coronary vasculature, while the histamine 2 receptor mediates adverse effects on cardiac remodeling via actions on cardiomyocytes, fibroblasts, and even endothelial cells. Conversely, there is growing evidence that the histamine 3 receptor exerts protective actions when activated. Little is known about the histamine 4 receptor in heart failure. Targeting histamine receptors as a therapeutic approach for heart failure is an important area of investigation given the over-the-counter access to many compounds targeting these receptors, and thus the relatively straight forward possibility of drug repurposing. In this review, we briefly describe histamine receptor signaling and the actions of each histamine receptor in normal cardiac physiology, before describing in more detail the known role of each histamine receptor in adverse cardiac remodeling and heart failure. This includes information from both clinical studies and experimental animal models. It is the goal of this review article to bring more focus to the possibility of targeting histamine receptors as therapy for heart failure.
Collapse
Affiliation(s)
- Scott P Levick
- Kolling Institute, St Leonards, Australia.
- Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2006, Australia.
| |
Collapse
|
2
|
Cookson TA. Bacterial-Induced Blood Pressure Reduction: Mechanisms for the Treatment of Hypertension via the Gut. Front Cardiovasc Med 2021; 8:721393. [PMID: 34485420 PMCID: PMC8414577 DOI: 10.3389/fcvm.2021.721393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Hypertension is a major risk factor for the development of cardiovascular disease. As more research into the gut microbiome emerges, we are finding increasing evidence to support that these microbes may have significant positive and negative effects on blood pressure and associated disorders. The bacterial-derived metabolites that are produced in the gut are capable of widespread effects to several tissue types and organs in the body. It is clear that the extensive metabolic function that is lost with gut dysbiosis is unlikely to be replenished with a single metabolite or bacterial strain. Instead, combinations of bacteria and concomitant therapies will provide a more well-rounded solution to manage hypertension. The bioactive molecules that are recognized in this review will inform on ideal characteristics of candidate bacteria and provide direction for future research on the gut microbiome in hypertension.
Collapse
|
3
|
Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci U S A 2020; 117:5550-5552. [PMID: 32123107 DOI: 10.1073/pnas.2001336117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci U S A 2020; 117:3150-3156. [PMID: 31992639 PMCID: PMC7022214 DOI: 10.1073/pnas.1909124117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart failure and chronic kidney disease are major causes of morbidity and mortality internationally. Although these dysfunctions are common and frequently coexist, the factors involved in their relationship in cardiorenal regulation are still largely unknown, mainly due to a lack of detailed molecular targets. Here, we found the increased plasma histamine in a preclinical mouse model of severe cardiac dysfunction, that had been cotreated with angiotensin II (Ang II), nephrectomy, and salt (ANS). The ANS mice exhibited impaired renal function accompanied with heart failure, and histamine depletion, by the genetic inactivation of histidine decarboxylase in mice, exacerbated the ANS-induced cardiac and renal abnormalities, including the reduction of left ventricular fractional shortening and renal glomerular and tubular injuries. Interestingly, while the pharmacological inhibition of the histamine receptor H3 facilitated heart failure and kidney injury in ANS mice, administration of the H3 agonist immethridine (Imm) was protective against cardiorenal damages. Transcriptome analysis of the kidney and biochemical examinations using blood samples illustrated that the increased inflammation in ANS mice was alleviated by Imm. Our results extend the pharmacological use of H3 agonists beyond the initial purposes of its drug development for neurogenerative diseases and have implications for therapeutic potential of H3 agonists that invoke the anti-inflammatory gene expression programming against cardiorenal damages.
Collapse
|
5
|
Wágner G, Mocking TAM, Arimont M, Provensi G, Rani B, Silva-Marques B, Latacz G, Da Costa Pereira D, Karatzidou C, Vischer HF, Wijtmans M, Kieć-Kononowicz K, de Esch IJP, Leurs R. 4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H 3 Receptor Agonists with in Vivo Central Nervous System Activity. J Med Chem 2019; 62:10848-10866. [PMID: 31675226 PMCID: PMC6912857 DOI: 10.1021/acs.jmedchem.9b01462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Despite the high diversity of histamine H3 receptor (H3R) antagonist/inverse agonist structures, partial or full H3R agonists have typically been imidazole derivatives. An in-house screening campaign intriguingly afforded the non-imidazole 4-(3-azetidin-1-yl)pyrimidin-2-amine 11b as a partial H3R agonist. Here, the design, synthesis, and structure-activity relationships of 11b analogues are described. This series yields several non-imidazole full agonists with potencies varying with the alkyl substitution pattern on the basic amine following the in vitro evaluation of H3R agonism using a cyclic adenosine monophosphate response element-luciferase reporter gene assay. The key compound VUF16839 (14d) combines nanomolar on-target activity (pKi = 8.5, pEC50 = 9.5) with weak activity on cytochrome P450 enzymes and good metabolic stability. The proposed H3R binding mode of 14d indicates key interactions similar to those attained by histamine. In vivo evaluation of 14d in a social recognition test in mice revealed an amnesic effect at 5 mg/kg intraperitoneally. The excellent in vitro and in vivo pharmacological profiles and the non-imidazole structure of 14d make it a promising tool compound in H3R research.
Collapse
Affiliation(s)
- Gábor Wágner
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Tamara A. M. Mocking
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Marta Arimont
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gustavo Provensi
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
| | - Barbara Rani
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
| | - Bruna Silva-Marques
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
- Department
of Physiotherapy, Federal University of
São Carlos, Washington
Luís, km 235, SP-310 São Carlos, Brazil
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Daniel Da Costa Pereira
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christina Karatzidou
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Iwan J. P. de Esch
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wanot B, Jasikowska K, Niewiadomska E, Biskupek-Wanot A. Cardiovascular effects of H3 histamine receptor inverse agonist/ H4 histamine receptor agonist, clobenpropit, in hemorrhage-shocked rats. PLoS One 2018; 13:e0201519. [PMID: 30071054 PMCID: PMC6072086 DOI: 10.1371/journal.pone.0201519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
Hemorrhagic shock has a potential to be life-threatening when it is not treated. The main causes of hemorrhagic shock involve: (1) forces causing injury; and (2) diseases that can cause hemorrhage., Therefore, due to the causes of hemorrhagic shock and the life-threatening potential, the search for new methods of shock treatment is extremely valuable to the modern medicine. The aim of this study was to investigate the influence of clobenpropit in the model of hemorrhagic shock. The experiments were conducted in 110 adult male Wistar rats weighing between 205 and 470g. 1, 2 and 5 μmol/kg of intravenous H3 receptors reverse agonists, clobentropit, and/or 1, 5 and 10 μmol/kg H3 receptor agonist, imetit, were used as general anesthetics. Irreversible hemorrhagic shock was induced by the paused bleeding until the mean arterial pressure (MAP) lowered to the level of 20–25 mmHg. It was proved that, in cases of critical hypotension, clobenpropit triggered a dose-dependent increase of: systolic blood pressure (SBP), diastolic blood pressure (DBP), MPA and heart rate (HR) of rats with critical hypotension. The most significant changes in hemodynamic parameters were achieved by administrating dosages of 2 mmol/kg. This resulted in the survival rate increase to up to 100%. However, imetit did not trigger any hemodynamic changes nor an increase in SBP, DBP, MAP or HR. Furthermore, it was found that the premedication with prazosin, yohimbine, 6-hydroxydopamine and the vasopressin V1a receptor antagonist blocked the effects of clobenpropit. Additionally, premedication with propranolol, captopril and ZD 7155 did not cause any significant changes in the measured hemodynamic parameters. In conclusion, after an intravenous injection clobenpropit, the inverse agonist of H3 histamine receptors/agonist of histamine receptors H4, causes a resuscitating effect on rats in hemorrhagic shock. Moreover, such effect is based on the effector mechanisms of sympathetic nervous system and vasopressin.
Collapse
Affiliation(s)
- Bartosz Wanot
- Polonia University, Health and Nursing Institute, Częstochowa, Poland
| | - Karolina Jasikowska
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Ewa Niewiadomska
- Department of Biostatics, School of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | | |
Collapse
|
7
|
He GH, Cai WK, Zhang JB, Ma CY, Yan F, Lu J, Xu GL. Associations of Polymorphisms in HRH2, HRH3, DAO, and HNMT Genes with Risk of Chronic Heart Failure. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1208476. [PMID: 26989676 PMCID: PMC4773518 DOI: 10.1155/2016/1208476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 01/08/2023]
Abstract
The pathophysiological functions of cardiac histamine level and related histamine receptors during the development of chronic heart failure (CHF) were intensively investigated previously. However, the relevance of polymorphisms in histamine-related genes, such as HRH2, HRH3, DAO, and HNMT, with CHF remains largely neglected. This study herein aims to analyze the clinical associations of polymorphisms in those genes with CHF risk. A total of 333 unrelated Chinese Han CHF patients and 354 ethnicity-matched healthy controls were recruited and 11 single nucleotide polymorphisms (SNPs) were genotyped. We found that the HRH3 rs3787429 polymorphism was associated with CHF risk (p < 0.001). The T allele of rs3787429 exhibited protective effect against CHF under the dominant (ORs = 0.455; 95% CIs = 0.322-0.642) and additive models (ORs = 0.662; 95% CIs = 0.523-0.838), while, for SNPs in HRH2, DAO, and HNMT, no significant associations were observed in the present study. These findings for the first time screen out one SNP (rs3787429) of HRH3 gene that was significantly associated with CHF in Chinese Han population, which may be a novel biomarker for personal prevention and treatment of CHF and provides novel highlights for investigating the contribution of this disease.
Collapse
Affiliation(s)
- Gong-Hao He
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| | | | - Chao-Yu Ma
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| | - Feng Yan
- Information Department, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| | - Jun Lu
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gui-Li Xu
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| |
Collapse
|
8
|
Hattori Y, Hattori K, Matsuda N. Regulation of the Cardiovascular System by Histamine. Handb Exp Pharmacol 2016; 241:239-258. [PMID: 27838850 DOI: 10.1007/164_2016_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1- and H2-receptors has become recognized adequately. Besides the recognized H1- and H2-receptor-mediated cardiovascular responses, novel roles of H3- and H4-receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H3- and H4-receptors, their potential mechanisms of action, and their pathological significance.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Kim HY, Bae EH, Ma SK, Chae DW, Choi KH, Kim YS, Hwang YH, Ahn C, Kim SW. Association of serum adiponectin level with albuminuria in chronic kidney disease patients. Clin Exp Nephrol 2015; 20:443-9. [PMID: 26445954 DOI: 10.1007/s10157-015-1173-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adiponectin, a peptide hormone secreted from adipocytes, exerts anti-diabetic, anti-atherogenic, and anti-inflammatory properties. We aimed to determine the relationship between serum adiponectin levels and albuminuria, and evaluate determinant factors for serum adiponectin in patients with chronic kidney disease (CKD). METHODS In total, 1442 CKD patients were included and divided into three groups according to their albumin-to-creatinine ratios: patients with normoalbuminuria (N = 228), microalbuminuria (N = 444), and macroalbuminuria (N = 761). Serum adiponectin was specifically assayed with a commercially available enzyme-linked immunosorbent assay kit. RESULTS Serum adiponectin was significantly higher in patients with macroalbuminuria than in those without macroalbuminuria (9.7 ± 6.0, 12.4 ± 9.0, and 14.9 ± 11.0 μg/mL in patients with normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively). Univariate linear regression analysis showed that the serum adiponectin concentrations were correlated with age, the albumin-to-creatinine ratio, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, whereas they were negatively correlated with body mass index, the estimated glomerular filtration rate, and serum albumin and triglyceride levels. The stepwise regression multiple analysis showed that sex; the estimated glomerular filtration rate; body mass index; total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels; and logarithm of the albumin-to-creatinine ratio were independently associated with the logarithm of serum adiponectin levels (r = 0.55, p < 0.001). CONCLUSION Serum adiponectin concentrations are higher in patients with increasing albuminuria, and these levels are associated with renal insufficiency and lipid profiles.
Collapse
Affiliation(s)
- Ha Yeon Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Dong Wan Chae
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University, Seoul, Korea
| | - Yong-Soo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Eulji University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea.
| |
Collapse
|
10
|
Yadav CH, Najmi AK, Akhtar M, Khanam R. Cardioprotective role of H3R agonist imetit on isoproterenol-induced hemodynamic changes and oxidative stress in rats. Toxicol Mech Methods 2015; 25:235-40. [DOI: 10.3109/15376516.2014.997946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
He GH, Cai WK, Meng JR, Ma X, Zhang F, Lu J, Xu GL. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese. Am J Cardiol 2015; 115:1555-1562. [PMID: 25846768 DOI: 10.1016/j.amjcard.2015.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 11/25/2022]
Abstract
Histidine decarboxylase (HDC) is a key determinant of the levels of endogenous histamine that has long been recognized to play important pathophysiological roles during development of chronic heart failure (CHF). Meanwhile, certain genetic variants in HDC gene were reported to affect the function of HDC and associated with histamine-related diseases. However, the relation between polymorphisms of HDC gene and CHF risk remains unclear. This study aims to investigate the associations between 2 nonsynonymous HDC polymorphisms (rs17740607 and rs2073440) and CHF. We designed a 2-stage case-control study, in which we genotyped 439 patients with CHF and 467 healthy controls recruited in Xi'an, China, and replicated this study in 413 patients with CHF and 452 healthy subjects in Kunming, China. We also performed in vitro experiments to further validate the functional consequences of variants positively associated with CHF. The rs17740607 polymorphism showed replicated associations with all-cause CHF according to genotype and allele distribution and also under a dominant and additive genetic model after adjusted for traditional cardiovascular-related factors. Functional experiments further demonstrated that rs17740607 polymorphism decreased the HDC activity. In conclusion, HDC rs17740607 polymorphism is at least a partial loss-of-function variant and acts as a protective factor against CHF, which provides novel highlights for investigating the contribution of CHF.
Collapse
Affiliation(s)
- Gong-Hao He
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Fan Zhang
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Jun Lu
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China.
| | - Gui-Li Xu
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, Kunming, China.
| |
Collapse
|
12
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-1414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
13
|
Chan NYK, Robador PA, Levi R. Natriuretic peptide-induced catecholamine release from cardiac sympathetic neurons: inhibition by histamine H3 and H4 receptor activation. J Pharmacol Exp Ther 2012; 343:568-77. [PMID: 22923736 PMCID: PMC3500538 DOI: 10.1124/jpet.112.198747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/23/2012] [Indexed: 12/20/2022] Open
Abstract
We reported previously that natriuretic peptides, including brain natriuretic peptide (BNP), promote norepinephrine release from cardiac sympathetic nerves and dopamine release from differentiated pheochromocytoma PC12 cells. These proexocytotic effects are mediated by an increase in intracellular calcium secondary to cAMP/protein kinase A (PKA) activation caused by a protein kinase G (PKG)-mediated inhibition of phosphodiesterase type 3 (PDE3). The purpose of the present study was to search for novel means to prevent the proadrenergic effects of natriuretic peptides. For this, we focused our attention on neuronal inhibitory Gα(i/o)-coupled histamine H(3) and H(4) receptors. Our findings show that activation of neuronal H(3) and H(4) receptors inhibits the release of catecholamines elicited by BNP in cardiac synaptosomes and differentiated PC12 cells. This effect results from a decrease in intracellular Ca(2+) due to reduced intracellular cAMP/PKA activity, caused by H(3) and H(4) receptor-mediated PKG inhibition and consequent PDE3-induced increase in cAMP metabolism. Indeed, selective H(3) and H(4) receptor agonists each synergized with a PKG inhibitor and a PDE3 activator in attenuating BNP-induced norepinephrine release from cardiac sympathetic nerve endings. This indicates that PKG inhibition and PDE3 stimulation are pivotal for the H(3) and H(4) receptor-mediated attenuation of BNP-induced catecholamine release. Cardiac sympathetic overstimulation is characteristic of advanced heart failure, which was recently found not to be improved by the administration of recombinant BNP (nesiritide), despite the predicated beneficial effects of natriuretic peptides. Because excessive catecholamine release is likely to offset the desirable effects of natriuretic peptides, our findings suggest novel means to alleviate their adverse effects and improve their therapeutic potential.
Collapse
Affiliation(s)
- Noel Yan-Ki Chan
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|