1
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Zhou Y, Song M, Xie D, Yan S, Yu S, Xie S, Cai M, Li H, Shang L, Jiang L, Yuan C, Huang M, Li J, Xu P. Structural Dynamics-Driven Discovery of Anticancer and Antimetastatic Effects of Diltiazem and Glibenclamide Targeting Urokinase Receptor. J Med Chem 2023; 66:5415-5426. [PMID: 36854648 DOI: 10.1021/acs.jmedchem.2c01663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.
Collapse
Affiliation(s)
- Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Henan Academy of Sciences, Zhengzhou, Henan 450046, P. R. China
| | - Daoqing Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Shufeng Yan
- Sanming University, Sanming, Fujian 365004, P. R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Le Shang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350109, P. R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
3
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
4
|
Wong BS, Chiu LY, Tu DG, Sheu GT, Chan TT. Anticancer Effects of Antihypertensive L-Type Calcium Channel Blockers on Chemoresistant Lung Cancer Cells via Autophagy and Apoptosis. Cancer Manag Res 2020; 12:1913-1927. [PMID: 32214849 PMCID: PMC7078713 DOI: 10.2147/cmar.s228718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Hypertension and cancer are frequently found comorbidity occurring in same individual. This study was intended to evaluate the anticancer effects of commonly used antihypertensive medications and chemotherapy on chemoresistant lung cancer cells. Methods Calcium channel blockers (CCBs), including Verapamil, Diltiazem, and Nifedipine, either alone or combined with docetaxel (DOC) or vincristine (VCR) were used to treat A549 lung adenocarcinoma chemoresistant sublines. Cell viability was determined by MTT assay, and colony formation assay was used to demonstrate the long-term effect of CCBs on proliferation of the sublines. Apoptosis was evaluated by Annexin V assay and autophagy intensity was quantitated from acidic vesicular organelle formation. Pan-caspase inhibitor, shATG5 interference and chloroquine were applied to study the roles of Verapamil on apoptosis and autophagy, with related proteins verified by Western blot analysis. Results Results show that 10 μM of Verapamil and Diltiazem, but not Nifedipine, differentially induce autophagy in DOC-resistant or VCR-resistant A549 cells, respectively. When CCBs are combined with DOC or VCR to treat the sublines, 10 μM of Verapamil induces autophagy more significantly than Diltiazem and Nifedipine, respectively, in DOC-resistant (54.91±0.76, 18.03±0.69, 7.05±0.30) or VCR-resistant A549 (32.41±1.04, 21.51±0.63, 7.14±0.24) cells. Inhibition of apoptosis by pan-caspase inhibitor partly reduced cell death indicates association of caspase-dependent cell death but with persistence of autophagy. Inhibition of autophagy by interfering ATG5 expression reduced c-PARP level and apoptotic cells suggest a pro-death role of autophagy. Chloroquine treatment enhanced autophagosome accumulation and cell death but with reduced c-PARP level suggests that mechanism of caspase-independent cell death also contributes to Verapamil/chemotherapy-induced anticancer effects. Conclusion Verapamil combined with DOC or VCR induces chemoresistant lung cancer cells to death through autophagy burst and apoptosis more strongly than Diltiazem and Nifedipine. Administering Verapamil or Diltiazem individually with chemotherapy, but not Nifedipine, can be considered in lung cancer patients with hypertension.
Collapse
Affiliation(s)
- Bing-Sang Wong
- Division of Neurosurgery, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung County, Taiwan
| | - Ling-Yen Chiu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ting-Tat Chan
- Palliative Care Unit, Department of Family Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| |
Collapse
|
5
|
Guo R, Huang X, Jin X, Yang J. [Diltiazem inhibits proliferation and motility of hepatocellular cells in vitro by downregulating calcium-activated chloride channel TMEM16A]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:818-823. [PMID: 33168514 DOI: 10.3969/j.issn.1673-4254.2018.07.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To assess the inhibitory effect of diltiazem, a calcium channel inhibitor, on the proliferation and mobility of human hepatocellular carcinoma cells in vitro and explore the possible mechanism. METHODS Two human hepatocellular carcinoma cell lines, MHCC97H and 7402, were treated with different concentrations (0-400 μmol/L) of diltiazem for 12, 24, or 48 h, and the changes in the cell proliferation and mobility were observed with MTT assay and wound healing assay, respectively. The changes in the expressions of calcium-activated chloride channel TMEM16A at mRNA and protein levels in the treated cells were detected using RT-PCR and immunocytochemistry. RESULTS Treatment with diltiazem obviously inhibited the proliferation and suppressed the mobility of MHCC97H and 7402 cells in a time- and concentration-dependent manner (P < 0.05). Treatment with 100 μmol/L diltiazem for 24 h significantly inhibited the proliferation of MHCC97H cells and down-regulated the mRNA and protein levels of TMEM16A. In 7402 cells, diltiazem treatment at 50 μmol/L for 48 h resulted in the most significant inhibitory effect on the cell proliferation and TMEM16A expressions. CONCLUSIONS Diltiazem can transiently inhibit the invasion of hepatocellular carcinoma cells in vitro possibly by down-regulating the expression of TMEM16A at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaozhong Huang
- Department of Pathology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xueyuan Jin
- Department of Pathology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jun Yang
- Department of Pathology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
6
|
Han QF, Ren XF, Wu L, Li T, Yao HC. Use of calcium channel blockers in prostate cancer: Friends or foe? Int J Cardiol 2016; 203:740-1. [DOI: 10.1016/j.ijcard.2015.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
7
|
Fan Y, Zhou Y, Gong D, Zou C. No evidence for increased prostate cancer risk among calcium channel blockers user. Int J Cardiol 2015; 201:255-7. [PMID: 26301650 DOI: 10.1016/j.ijcard.2015.08.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Fan
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, PR China
| | - Yongjing Zhou
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, PR China
| | - Dandan Gong
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, PR China
| | - Chen Zou
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, PR China.
| |
Collapse
|
8
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
9
|
Abstract
The relationship between calcium channel blockers and prostate cancer has been an area of increased interest to investigators. Calcium channel blockers have been shown to influence cell proliferation, differentiation, and apoptosis. Clinically, the association between calcium channel blockers and the development of prostate cancer has been controversial. However, on a basic science level, there is evidence that calcium channel blockers induce cytotoxicity in androgen receptor positive cell lines and may offer an innovative strategy for the treatment of castration-resistant prostate cancer.
Collapse
|