1
|
Farr CV, Xiao Y, El-Kasaby A, Schupp M, Hotka M, di Mauro G, Clarke A, Pastor Fernandez M, Sandtner W, Stockner T, Klade C, Maulide N, Freissmuth M. Probing the Chemical Space of Guanidino-Carboxylic Acids to Identify the First Blockers of the Creatine-Transporter-1. Mol Pharmacol 2024; 106:319-333. [PMID: 39322412 DOI: 10.1124/molpharm.124.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The creatine transporter-1 (CRT-1/SLC6A8) maintains the uphill transport of creatine into cells against a steep concentration gradient. Cellular creatine accumulation is required to support the ATP-buffering by phosphocreatine. More than 60 compounds have been explored in the past for their ability to inhibit cellular creatine uptake, but the number of active compounds is very limited. Here, we show that all currently known inhibitors are full alternative substrates. We analyzed their structure-activity relationship for inhibition of CRT-1 to guide a rational approach to the synthesis of novel creatine transporter ligands. Measurements of both inhibition of [3H]creatine uptake and transport associated currents allowed for differentiating between full and partial substrates and true inhibitors. This combined approach led to a refined understanding of the structural requirements for binding to CRT-1, which translated into the identification of three novel compounds - i.e., compound 1 (2-(N-benzylcarbamimidamido)acetic acid), MIPA572 (=carbamimidoylphenylalanine), and MIPA573 (=carbamimidoyltryptophane) that blocked CRT-1 transport, albeit with low affinity. In addition, we found two new alternative full substrates, namely MIPA574 (carbamimidoylalanine) and GiDi1257 (1-carbamimidoylazetidine-3-carboxylic acid), which was superior in affinity to all known CTR-1 ligands, and one partial substrate, namely GiDi1254 (1-carbamimidoylpiperidine-4-carboxylic acid). SIGNIFICANCE STATEMENT: The creatine transporter-1 (CRT-1) is required to maintain intracellular creatine levels. Inhibition of CRT-1 has been recently proposed as a therapeutic strategy for cancer, but pharmacological tools are scarce. In fact, all available inhibitors are alternative substrates. We tested existing and newly synthesized guanidinocarboxylic acids for CRT-1 inhibition and identified three blockers, one partial and two full substrates of CRT-1. Our results support a refined structural understanding of ligand binding to CRT-1 and provide a proof-of-principle for blockage of CRT-1.
Collapse
Affiliation(s)
- Clemens V Farr
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Yi Xiao
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Manuel Schupp
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Matej Hotka
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Giovanni di Mauro
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Amy Clarke
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Miryam Pastor Fernandez
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Christoph Klade
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Nuno Maulide
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| |
Collapse
|
2
|
Chen LC, Chan MH, Chen HH. Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm. Life (Basel) 2024; 14:820. [PMID: 39063573 PMCID: PMC11278444 DOI: 10.3390/life14070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic cathinones have gained increasing popularity in the illicit drug market, yet their abuse potential remains poorly understood. In this study, zebrafish were used to compare the addictive potential of three cathinone analogs, namely pentylone, eutylone, and N-ethylpentylone (NEP). The zebrafish received various doses (0 to 60 mg/kg) of the cathinone analogs by oral gavage over two sessions per day for two consecutive days to induce conditioned place preference (CPP). Pentylone, eutylone, and NEP dose-dependently induced CPP, with NEP showing significantly higher CPP than pentylone and eutylone at the dose of 20 mg/kg. The fish that received 60 mg/kg of cathinones underwent extinction, followed by reinstatement triggered by drug priming. NEP required six sessions to meet the criteria of extinction, followed by eutylone, which required four sessions, and pentylone, which required three sessions. Furthermore, NEP and eutylone at a dose of 40 mg/kg could reinstate the extinguished CPP, while 60 mg/kg of pentylone was necessary for CPP reinstatement. The persistence of susceptibility to reinstatement was also assessed at 7 and 14 days after the initial reinstatement. The CPP induced by all three cathinone analogs could be reinstated 7 days after the initial reinstatement, whereas only CPP induced by NEP, but not pentylone and eutylone, could be reinstated again after 14 days. Considering the potency to induce CPP, resistance to extinction, and the propensity for reinstatement, the abuse liability rank order of the cathinone analogs might be as follows: NEP > eutylone > pentylone. These findings suggest that the zebrafish CPP paradigm can serve as a viable model for assessing the relative abuse liability of substances.
Collapse
Affiliation(s)
- Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Miaoli County 35053, Taiwan;
- Institute of Systems Neuroscience, College of life Science and Medicine, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30044, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Section 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan
- Department of Medical Research, China Medical University Hospital, 2, Yude Road, North District, Taichung City 404327, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Miaoli County 35053, Taiwan;
- Institute of Neuroscience, National Chengchi University, 64, Section 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan
| |
Collapse
|
3
|
Lee KH, Won SJ, Oyinloye P, Shi L. Unlocking the Potential of High-Quality Dopamine Transporter Pharmacological Data: Advancing Robust Machine Learning-Based QSAR Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583803. [PMID: 38558976 PMCID: PMC10979915 DOI: 10.1101/2024.03.06.583803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sung Joon Won
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Precious Oyinloye
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE. Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones. Neuropharmacology 2024; 245:109827. [PMID: 38154512 PMCID: PMC10842458 DOI: 10.1016/j.neuropharm.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, β-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their β-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.
Collapse
Affiliation(s)
- Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
Mayer FP, Niello M, Bulling S, Zhang YW, Li Y, Kudlacek O, Holy M, Kooti F, Sandtner W, Rudnick G, Schmid D, Sitte HH. Mephedrone induces partial release at human dopamine transporters but full release at human serotonin transporters. Neuropharmacology 2023; 240:109704. [PMID: 37703919 DOI: 10.1016/j.neuropharm.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Mephedrone (4-methylmethcathinone) is a cathinone derivative that is recreationally consumed for its energizing and empathogenic effects. The stimulating properties are believed to arise from the ability of mephedrone to interact with the high-affinity transporters for dopamine (DA) (DAT) and norepinephrine (NET), whereas the entactogenic effect presumably relies on its activity at the serotonin (5-HT) transporter (SERT). Early studies found that mephedrone acts as a releaser at NET, DAT and SERT, and thus promotes efflux of the respective monoamines. Evidence linked drug-induced reverse transport of 5-HT via SERT to prosocial effects, whereas activity at DAT is strongly correlated with abuse liability. Consequently, we sought to evaluate the pharmacology of mephedrone at human (h) DAT and SERT, heterologously expressed in human embryonic kidney 293 cells, in further detail. In line with previous studies, we report that mephedrone evokes carrier-mediated release via hDAT and hSERT. We found this effect to be sensitive to the protein kinase C inhibitor GF109203X. Electrophysiological recordings revealed that mephedrone is actively transported by hDAT and hSERT. However, mephedrone acts as a full substrate of hSERT but as a partial substrate of hDAT. Furthermore, when compared to fully efficacious releasing agents at hDAT and hSERT (i.e. S(+)-amphetamine and para-chloroamphetamine, respectively) mephedrone displays greater efficacy as a releaser at hSERT than at hDAT. In summary, this study provides additional insights into the molecular mechanism of action of mephedrone at hDAT and hSERT.
Collapse
Affiliation(s)
- Felix P Mayer
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Simon Bulling
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Yang Li
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Fatemeh Kooti
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Diethart Schmid
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Center for Addiction Research and Science - AddRess, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria.
| |
Collapse
|
6
|
Niello M, Sideromenos S, Gradisch R, O´Shea R, Schwazer J, Maier J, Kastner N, Sandtner W, Jäntsch K, Lupica CR, Hoffman AF, Lubec G, Loland CJ, Stockner T, Pollak DD, Baumann MH, Sitte HH. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc Natl Acad Sci U S A 2023; 120:e2114204120. [PMID: 36730201 PMCID: PMC9963675 DOI: 10.1073/pnas.2114204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.
Collapse
Affiliation(s)
- Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Spyridon Sideromenos
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ronan O´Shea
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Jakob Schwazer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Nina Kastner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Carl R. Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Alexander F. Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020Salzburg, Austria
| | - Claus J. Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Daniela D. Pollak
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
- AddRess, Center for Addiction Research and Science, Medical University of Vienna, 1090Vienna, Austria
| |
Collapse
|
7
|
Bhat S, El-Kasaby A, Kasture A, Boytsov D, Reichelt JB, Hummel T, Sucic S, Pifl C, Freissmuth M, Sandtner W. A mechanism of uncompetitive inhibition of the serotonin transporter. eLife 2023; 12:e82641. [PMID: 36648438 PMCID: PMC9883013 DOI: 10.7554/elife.82641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ameya Kasture
- Department of Neurobiology, University of ViennaViennaAustria
| | - Danila Boytsov
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Julian B Reichelt
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas Hummel
- Department of Neurobiology, University of ViennaViennaAustria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Christian Pifl
- Center for Brain Research, Medical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
8
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
9
|
Gradisch R, Szöllősi D, Niello M, Lazzarin E, Sitte HH, Stockner T. Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundle domain. J Biol Chem 2022; 298:101613. [PMID: 35065961 PMCID: PMC8867121 DOI: 10.1016/j.jbc.2022.101613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter's engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.
Collapse
Affiliation(s)
- Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erika Lazzarin
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Gavai AK, Bouzembrak Y, van den Bulk LM, Liu N, van Overbeeke LF, van den Heuvel LJ, Mol H, Marvin HJ. Artificial intelligence to detect unknown stimulants from scientific literature and media reports. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Youn DH, Kim JM, Hong YK, Park SI, Lee JM, Kim YH, Park CW, Kang MS. Assessment of the abuse potential of methamnetamine in rodents: a behavioral pharmacology study. Psychopharmacology (Berl) 2021; 238:2155-2165. [PMID: 33811503 DOI: 10.1007/s00213-021-05840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Methamnetamine (MNA; PAL-1046) is a new psychoactive substance that acts as a full biogenic amine transporter (BAT) substrate. BAT substrates promote neurotransmitter release from the nerve terminal and can be abused as stimulants. However, scientific information on the abuse potential of methamnetamine is lacking. OBJECTIVE We evaluated the abuse liability of methamnetamine. METHODS The effective dose range of methamnetamine was determined using a climbing behavior test. The rewarding effect and reinforcing effect of the test compound were evaluated in mice by conditioned place preference (CPP) testing and self-administration (SA) testing at the selected doses. Dopamine level changes were analyzed using synaptosomes and in vivo microdialysis to investigate the effects of methamnetamine on the central nervous system. Drug discrimination experiments were used to examine the potential similarity of the interoceptive effects of methamnetamine and cocaine. RESULTS A significant response was observed in the climbing behavior test with 10 and 40 mg/kg intraperitoneally administered methamnetamine. In the CPP test, mice intraperitoneally administered methamnetamine (10 and 20 mg/kg) showed a significant preference for the drug-paired compartment. In the SA test, mice that intravenously received 1 mg/kg/infusion showed significant active-lever responses. Dopamine was significantly increased in synaptosomes and in in vivo microdialysis tests. Furthermore, methamnetamine showed cross-generalization with cocaine in a dose-dependent manner. CONCLUSIONS Methamnetamine exhibits interceptive stimulus properties similar to those of cocaine and induces rewarding and reinforcing effects, suggesting its dependence liability potential.
Collapse
Affiliation(s)
- Dong-Hyun Youn
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Jin Mook Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Young-Ki Hong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Seo-In Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Chang Won Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Mi Sun Kang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea.
| |
Collapse
|
12
|
Extracellular loops of the serotonin transporter act as a selectivity filter for drug binding. J Biol Chem 2021; 297:100863. [PMID: 34118233 PMCID: PMC8253976 DOI: 10.1016/j.jbc.2021.100863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388–400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.
Collapse
|
13
|
Maier J, Rauter L, Rudin D, Niello M, Holy M, Schmid D, Wilson J, Blough BE, Gannon BM, Murnane KS, Sitte HH. α-PPP and its derivatives are selective partial releasers at the human norepinephrine transporter: A pharmacological characterization of interactions between pyrrolidinopropiophenones and high and low affinity monoamine transporters. Neuropharmacology 2021; 190:108570. [PMID: 33864800 DOI: 10.1016/j.neuropharm.2021.108570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
While classical cathinones, such as methcathinone, have been shown to be monoamine releasing agents at human monoamine transporters, the subgroup of α-pyrrolidinophenones has thus far solely been characterized as monoamine transporter reuptake inhibitors. Herein, we report data from previously undescribed α-pyrrolidinopropiophenone (α-PPP) derivatives and compare them with the pharmacologically well-researched α-PVP (α-pyrrolidinovalerophenone). Radiotracer-based in vitro uptake inhibition assays in HEK293 cells show that the investigated α-PPP derivatives inhibit the human high-affinity transporters of dopamine (hDAT) and norepinephrine (hNET) in the low micromolar range, with α-PVP being ten times more potent. Similar to α-PVP, no relevant pharmacological activity was found at the human serotonin transporter (hSERT). Unexpectedly, radiotracer-based in vitro release assays reveal α-PPP, MDPPP and 3Br-PPP, but not α-PVP, to be partial releasing agents at hNET (EC50 values in the low micromolar range). Furthermore, uptake inhibition assays at low-affinity monoamine transporters, i.e., the human organic cation transporters (hOCT) 1-3 and human plasma membrane monoamine transporter (hPMAT), bring to light that all compounds inhibit hOCT1 and 2 (IC50 values in the low micromolar range) while less potently interacting with hPMAT and hOCT3. In conclusion, this study describes (i) three new hybrid compounds that efficaciously block hDAT while being partial releasers at hNET, and (ii) highlights the interactions of α-PPP-derivatives with low-affinity monoamine transporters, giving impetus to further studies investigating the interaction of drugs of abuse with OCT1-3 and PMAT.
Collapse
Affiliation(s)
- Julian Maier
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Laurin Rauter
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Deborah Rudin
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Marco Niello
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Marion Holy
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Diethart Schmid
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Physiology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Joseph Wilson
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC, USA
| | - Bruce E Blough
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC, USA
| | - Brenda M Gannon
- Mercer University College of Pharmacy, Mercer University Health Sciences Center, Department of Pharmaceutical Sciences, Atlanta, GA, USA; Louisiana State University Health Sciences Center, Shreveport, Department of Pharmacology Toxicology & Neuroscience and Louisiana Addiction Research Center, Shreveport, LA, USA
| | - Kevin S Murnane
- Mercer University College of Pharmacy, Mercer University Health Sciences Center, Department of Pharmaceutical Sciences, Atlanta, GA, USA; Louisiana State University Health Sciences Center, Shreveport, Department of Pharmacology Toxicology & Neuroscience and Louisiana Addiction Research Center, Shreveport, LA, USA
| | - Harald H Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria; AddRess Centre for Addiction Research and Science, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Hong YK, Kim YH, Lee JM, Yoo HH, Choi SO, Kang MS. Characterization of in vitro phase I metabolites of methamnetamine in human liver microsomes by liquid chromatography-quadrupole time-of-flight mass spectrometry. Int J Legal Med 2021; 135:1471-1476. [PMID: 33928430 DOI: 10.1007/s00414-021-02594-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 11/24/2022]
Abstract
N-Methyl-1-(naphthalen-2-yl)propan-2-amine (methamnetamine, PAL-1046) is an amphetamine-based new psychoactive substance (NPS). Methamnetamine has been reported to cause excessive release of serotonin, and it is classified as an empathogen or entactogen. It is not regulated as a controlled substance in most countries, and there are no studies on its metabolism. In this study, in vitro phase I metabolism of methamnetamine in human liver microsomes (HLM) and flavin-containing monooxygenase (FMO) was investigated by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). Eight metabolites of methamnetamine were identified and were structurally characterized achieved by a combination of accurate mass analysis and tandem mass spectrometry. The identified metabolic processes include N-demethylation, N-hydroxylation, aromatic hydroxylation, and a combination of these processes. N-Hydroxylated metabolites were confirmed based on expressed FMOs. The major metabolite was formed from methamnetamine via hydroxylation of the naphthalene ring after the in vitro phase I process. These results could help detect methamnetamine ingestion by NPS abusers.
Collapse
Affiliation(s)
- Young-Ki Hong
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Chungccheongbuk-do, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Chungccheongbuk-do, Republic of Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Chungccheongbuk-do, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sun-Ok Choi
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Chungccheongbuk-do, Republic of Korea
| | - Mi Sun Kang
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Chungccheongbuk-do, Republic of Korea.
| |
Collapse
|
15
|
Bhat S, Guthrie DA, Kasture A, El-Kasaby A, Cao J, Bonifazi A, Ku T, Giancola JB, Hummel T, Freissmuth M, Newman AH. Tropane-Based Ibogaine Analog Rescues Folding-Deficient Serotonin and Dopamine Transporters. ACS Pharmacol Transl Sci 2021; 4:503-516. [PMID: 33860180 PMCID: PMC8033614 DOI: 10.1021/acsptsci.0c00102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 02/05/2023]
Abstract
![]()
Missense
mutations that give rise to protein misfolding are rare,
but collectively, defective protein folding diseases are consequential.
Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning),
but the underlying mechanisms remain enigmatic. Ibogaine and its active
metabolite noribogaine correct folding defects in the dopamine transporter
(DAT), but they rescue only a very limited number of folding-deficient
DAT mutant proteins, which give rise to infantile Parkinsonism and
dystonia. Herein, a series of analogs was generated by reconfiguring
the complex ibogaine ring system and exploring the structural requirements
for binding to wild-type transporters, as well as for rescuing two
equivalent synthetic folding-deficient mutants, SERT-PG601,602AA and DAT-PG584,585AA. The most active tropane-based
analog (9b) was also an effective pharmacochaperone in vivo in Drosophila harboring the DAT-PG584,585AA mutation and rescued 6 out of 13 disease-associated
human DAT mutant proteins in vitro. Hence, a novel
lead pharmacochaperone has been identified that demonstrates medication
development potential for patients harboring DAT mutations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Daryl A Guthrie
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Ameya Kasture
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - JoLynn B Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
16
|
Niello M, Cintulová D, Raithmayr P, Holy M, Jäntsch K, Colas C, Ecker GF, Sitte HH, Mihovilovic MD. Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Front Pharmacol 2021; 12:654061. [PMID: 33897439 PMCID: PMC8063026 DOI: 10.3389/fphar.2021.654061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Mephedrone is a largely abused psychostimulant. It elicits the release of monoamines via the high affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). Stereoselective metabolic reactions are involved in the inactivation and the elimination of its chemical structure. However, during these processes, several structures are generated and some of them have been reported to be still pharmacologically active. In this study 1) we have newly synthetized several putative mephedrone metabolites, 2) compared their activity at monoamine transporters, 3) generated quantitative structure activity relationships, and 4) exploited the chemical structure of the putative metabolites to screen a urine sample from a drug user and dissect mephedrone metabolism. We have found that most of the tested metabolites are weak inhibitors of monoamine transporters and that all of them are more potent at DAT and NET in comparison to SERT. The only exception is represented by the COOH-metabolite which shows no pharmacological activity at all three monoamine transporters. The enantioselectivity of mephedrone and its metabolites is present mainly at SERT, with only minor effects at DAT and NET being introduced when the β-keto group is reduced to an OH-group. Importantly, while at DAT the putative metabolites did not show changes in inhibitory potencies, but rather changes in their substrate/blocker profile, at SERT they showed mainly changes in inhibitory potencies. Molecular modeling suggests that the hydrophobic nature of a specific SERT subpocket may be involved in such loss of affinity. Finally, the assessment of the putative metabolites in one urine sample of mephedrone user displayed two previously uncharacterized metabolites, 4-COOH-nor-mephedrone (4-COOH-MC) and dihydro-4- nor-mephedrone (dihydro-4-MC). These results confirm and expand previous studies highlighting the importance of the stereochemistry in the pharmacodynamics of phase-1 metabolites of mephedrone, established their structure-activity relationships at DAT, NET and SERT and pave the way for a systematic dissection of mephedrone metabolic routes. Given the number of structures found having residual and modified pharmacological profiles, these findings may help in understanding the complex subjective effects of administered mephedrone. Moreover, the dissection of mephedrone metabolic routes may help in developing new therapies for treating psychostimulants acute intoxications.
Collapse
Affiliation(s)
- Marco Niello
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | | - Philip Raithmayr
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Kathrin Jäntsch
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Claire Colas
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | |
Collapse
|
17
|
How to rescue misfolded SERT, DAT and NET: targeting conformational intermediates with atypical inhibitors and partial releasers. Biochem Soc Trans 2019; 47:861-874. [PMID: 31064865 PMCID: PMC6599159 DOI: 10.1042/bst20180512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Point mutations in the coding sequence for solute carrier 6 (SLC6) family members result in clinically relevant disorders, which are often accounted for by a loss-of-function phenotype. In many instances, the mutated transporter is not delivered to the cell surface because it is retained in the endoplasmic reticulum (ER). The underlying defect is improper folding of the transporter and is the case for many of the known dopamine transporter mutants. The monoamine transporters, i.e. the transporters for norepinephrine (NET/SLC6A2), dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4), have a rich pharmacology; hence, their folding-deficient mutants lend themselves to explore the concept of pharmacological chaperoning. Pharmacochaperones are small molecules, which bind to folding intermediates with exquisite specificity and scaffold them to a folded state, which is exported from the ER and delivered to the cell surface. Pharmacochaperoning of mutant monoamine transporters, however, is not straightforward: ionic conditions within the ER are not conducive to binding of most typical monoamine transporter ligands. A collection of compounds exists, which are classified as atypical ligands because they trap monoamine transporters in unique conformational states. The atypical binding mode of some DAT inhibitors has been linked to their anti-addictive action. Here, we propose that atypical ligands and also compounds recently classified as partial releasers can serve as pharmacochaperones.
Collapse
|
18
|
Hasenhuetl PS, Bhat S, Freissmuth M, Sandtner W. Functional Selectivity and Partial Efficacy at the Monoamine Transporters: A Unified Model of Allosteric Modulation and Amphetamine-Induced Substrate Release. Mol Pharmacol 2019; 95:303-312. [PMID: 30567955 DOI: 10.1124/mol.118.114793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
All clinically approved drugs targeting the plasmalemmal transporters for dopamine, norepinephrine, and serotonin act either as competitive uptake inhibitors or as amphetamine-like releasers. Monoamine transporter (MAT) ligands that allosterically affect MAT-mediated substrate uptake, release, or both were recently discovered. Their modes of action have not yet been explained in a unified framework. Here, we go beyond competitive inhibitors and classic amphetamines and introduce concepts for partial efficacy at and allosteric modulation of MATs. After we elaborate on a kinetic account for amphetamine action, we provide an explanation for partial release (i.e., the observation that some amphetamines are less efficacious than others in inducing monoamine efflux). We then elucidate mechanisms of allosteric inhibition and stimulation of MATs, which can be functionally selective for either substrate uptake or amphetamine-induced release. These concepts are integrated into a parsimonious kinetic framework, which relies exclusively on physiologic transport modes (without any deviation from an alternating access mechanism). The model posits cooperative substrate and Na+ binding and functional selectivity by conformational selection (i.e., preference of the allosteric modulators for the substrate-loaded or substrate-free states of the transporter). Thus, current knowledge about the kinetics of monoamine transport is sufficiently detailed to provide a quantitative description of the releasing action of amphetamines, of substrate uptake, and of selective modulation thereof by allosteric modulators.
Collapse
Affiliation(s)
- Peter S Hasenhuetl
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shreyas Bhat
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
The synthetic cathinones, butylone and pentylone, are stimulants that act as dopamine transporter blockers but 5-HT transporter substrates. Psychopharmacology (Berl) 2019; 236:953-962. [PMID: 30345459 PMCID: PMC6476708 DOI: 10.1007/s00213-018-5075-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE Synthetic cathinones continue to emerge in recreational drug markets worldwide. 1-(1,3-Benzodioxol-5-yl)-2-(methylamino)butan-1-one (butylone) and 1-(1,3-benzodioxol-5-yl)-2-(methylamino)pentan-1-one (pentylone) are derivatives of the cathinone compound, 1-(1,3-benzodioxol-5-yl)-2-(methylamino)propan-1-one (methylone), that are being detected in drug products and human casework. OBJECTIVES The purpose of the present study was to examine the neuropharmacology of butylone and pentylone using in vitro and in vivo methods. METHODS In vitro uptake and release assays were carried out in rat brain synaptosomes and in cells expressing human dopamine transporters (DAT) and 5-HT transporters (SERT). In vivo microdialysis was performed in the nucleus accumbens of conscious rats to assess drug-induced changes in neurochemistry. RESULTS Butylone and pentylone were efficacious uptake blockers at DAT and SERT, though pentylone was more DAT-selective. Both drugs acted as transporter substrates that evoked release of [3H]5-HT at SERT, while neither evoked release at DAT. Consistent with the release data, butylone and pentylone induced substrate-associated inward currents at SERT but not DAT. Administration of butylone or pentylone to rats (1 and 3 mg/kg, i.v.) increased extracellular monoamines and motor activity, but pentylone had weaker effects on 5-HT and stronger effects on motor stimulation. CONCLUSIONS Our data demonstrate that increasing the α-carbon chain length of methylone creates "hybrid" transporter compounds which act as DAT blockers but SERT substrates. Nevertheless, butylone and pentylone elevate extracellular dopamine and stimulate motor activity, suggesting both drugs possess significant risk for abuse.
Collapse
|
20
|
Steele TWE, Eltit JM. Using Ca 2+-channel biosensors to profile amphetamines and cathinones at monoamine transporters: electro-engineering cells to detect potential new psychoactive substances. Psychopharmacology (Berl) 2019; 236:973-988. [PMID: 30448989 PMCID: PMC6525079 DOI: 10.1007/s00213-018-5103-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND The appearance of stimulant-class new psychoactive substances (NPS) is a frequent and significant problem in our society. Cathinone variants are often sold illegally as 3,4-methylenedioxy methamphetamine ("ecstasy") or disguised for legal sale using misleading names such as "bath salts" and carry the risk of promoting disruptive mental states, addiction, and fatal overdose. The principal targets of these recreational drugs are monoamine transporters expressed in catecholaminergic and serotonergic neurons. Some transporter ligands can be transported into cells, where they can promote a massive release of neurotransmitters through reverse transport, and others can block uptake. A ligand's dopamine vs. serotonin transporter selectivity, potency, and activity as a substrate or blocker can help elucidate the abuse liability and subjective effects of a drug. OBJECTIVES Here, we describe the discovery, development, and validation of an emerging methodology for compound activity assessment at monoamine transporters. KEY FINDINGS Substrates generate inward electrical currents through transporters and can depolarize the plasma membrane, whereas blockers work as a "cork in a bottle" and function as antagonists. Voltage-gated Ca2+ channels were co-expressed with monoamine transporters in cultured cells and used to measure fluctuations of the membrane electrical potential. In this system, substrates of monoamine transporters produce reliable dose-dependent Ca2+ signals, while blockers hinder them. DISCUSSION This system constitutes a novel use of voltage-gated Ca2+ channels as biosensors for the purpose of characterizing ligand activity at monoamine transporters using fluorimetry. This approach in combination with in vivo evaluations of drugs' abuse-related effects is a powerful strategy for anticipating potential stimulant-class NPS.
Collapse
Affiliation(s)
- Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA.
| |
Collapse
|
21
|
Abstract
There is a plethora of amphetamine derivatives exerting stimulant, euphoric, anti-fatigue, and hallucinogenic effects; all structural properties allowing these effects are contained within the amphetamine structure. In the first part of this review, the interaction of amphetamine with the dopamine transporter (DAT), crucially involved in its behavioral effects, is covered, as well as the role of dopamine synthesis, the vesicular monoamine transporter VMAT2, and organic cation 3 transporter (OCT3). The second part deals with requirements in amphetamine's effect on the kinases PKC, CaMKII, and ERK, whereas the third part focuses on where we are in developing anti-amphetamine therapeutics. Thus, treatments are discussed that target DAT, VMAT2, PKC, CaMKII, and OCT3. As is generally true for the development of therapeutics for substance use disorder, there are multiple preclinically promising specific compounds against (meth)amphetamine, for which further development and clinical trials are badly needed.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Hasenhuetl PS, Bhat S, Mayer FP, Sitte HH, Freissmuth M, Sandtner W. A kinetic account for amphetamine-induced monoamine release. J Gen Physiol 2018; 150:431-451. [PMID: 29439119 PMCID: PMC5839721 DOI: 10.1085/jgp.201711915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
This study on serotonin transporters shows that amphetamine-induced monoamine release requires cooperative substrate and cosubstrate binding. A kinetic model is presented that can account qualitatively and quantitatively for the releasing action of amphetamines. The plasmalemmal monoamine transporters for dopamine, norepinephrine, and serotonin (SERT) are targets for amphetamines. In vivo, amphetamines elicit most, if not all, of their actions by triggering monoamine efflux. This is thought to be accomplished by an amphetamine-induced switch from the forward-transport to the substrate-exchange mode. The mechanism underlying this switch has remained elusive; available kinetic models posit that substrates and cosubstrate Na+ ions bind either in a random or in a sequential order. Neither can account for all reported experimental observations. We used electrophysiological recordings to interrogate crucial conformational transitions associated with the binding of five different substrates (serotonin, para-chloroamphetamine, and the high-affinity naphthyl-propan-amines PAL-287, PAL-1045, and PAL-1046) to human SERT expressed in HEK293 cells; specifically, we determined the relaxation kinetics of SERT from a substrate-loaded to a substrate-free state at various intracellular and extracellular Na+ concentrations. These rates and their dependence on intracellular and extracellular Na+ concentrations differed considerably between substrates. We also examined the effect of K+ on substrate affinity and found that K+ enhanced substrate dissociation. A kinetic model was developed, which allowed for random, but cooperative, binding of substrate and Na+ (or K+). The synthetic data generated by this model recapitulated the experimental observations. More importantly, the cooperative binding model accounted for the releasing action of amphetamines without any digression from alternating access. To the best of our knowledge, this model is the first to provide a mechanistic framework for amphetamine-induced monoamine release and to account for the findings that some substrates are less efficacious than others in promoting the substrate-exchange mode.
Collapse
Affiliation(s)
- Peter S Hasenhuetl
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix P Mayer
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Abstract
The dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters, which are collectively referred to as monoamine transporters (MATs), play significant roles in regulating the neuronal response to these neurotransmitters. MATs terminate the action of these neurotransmitters by translocating them from the synaptic space into the presynaptic neurons. These three transmitters are responsible for controlling a number of physiological, emotional, and behavioral functions, with their transporters being the site of action of drugs employed for the treatment of a variety of conditions, including depression, anxiety, ADHD, schizophrenia, and psychostimulant abuse. Provided in this unit is information on the localization and regulation of MATs and the structural components of these proteins most responsible for the translocation process. Also included is a brief description of the evolution of ligands that interact with these transporters, as well as current theories concerning the pharmacological effects of substances that interact with these sites, including the molecular mechanisms of action of uptake inhibitors and allosteric modulators. Data relating to the presence, structure, and functions of allosteric modulators are included as well. The aim of this review is to provide background information on MATs to those who are new to this field, with a focus on the therapeutic potential of compounds that interact with these substrate transport sites. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Pennsylvania
| | - Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Pennsylvania
| |
Collapse
|
24
|
N-Alkylated Analogs of 4-Methylamphetamine (4-MA) Differentially Affect Monoamine Transporters and Abuse Liability. Neuropsychopharmacology 2017; 42:1950-1961. [PMID: 28530234 PMCID: PMC5561352 DOI: 10.1038/npp.2017.98] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 01/22/2023]
Abstract
Clandestine chemists synthesize novel stimulant drugs by exploiting structural templates known to target monoamine transporters for dopamine, norepinephrine, and serotonin (DAT, NET, and SERT, respectively). 4-Methylamphetamine (4-MA) is an emerging drug of abuse that interacts with transporters, but limited structure-activity data are available for its analogs. Here we employed uptake and release assays in rat brain synaptosomes, voltage-clamp current measurements in cells expressing transporters, and calcium flux assays in cells coexpressing transporters and calcium channels to study the effects of increasing N-alkyl chain length of 4-MA on interactions at DAT, NET, and SERT. In addition, we performed intracranial self-stimulation in rats to understand how the chemical modifications affect abuse liability. All 4-MA analogs inhibited uptake at DAT, NET, and SERT, but lengthening the amine substituent from methyl to ethyl, propyl, and butyl produced a stepwise decrease in potency. N-methyl 4-MA was an efficacious substrate-type releaser at DAT that evoked an inward depolarizing current and calcium influx, whereas other analogs did not exhibit these effects. N-methyl and N-ethyl 4-MA were substrates at NET, whereas N-propyl and N-butyl 4-MA were not. All analogs acted as SERT substrates, though N-butyl 4-MA had very weak effects. Intracranial self-stimulation in rats showed that elongating the N-alkyl chain decreased abuse-related effects in vivo that appeared to parallel reductions in DAT activity. Overall, converging lines of evidence show that lengthening the N-alkyl substituent of 4-MA reduces potency to inhibit transporters, eliminates substrate activity at DAT and NET, and decreases abuse liability of the compounds.
Collapse
|
25
|
Bhat S, Hasenhuetl PS, Kasture A, El-Kasaby A, Baumann MH, Blough BE, Sucic S, Sandtner W, Freissmuth M. Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates. J Biol Chem 2017; 292:16773-16786. [PMID: 28842491 PMCID: PMC5633137 DOI: 10.1074/jbc.m117.794081] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants.
Collapse
Affiliation(s)
- Shreyas Bhat
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter S Hasenhuetl
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael H Baumann
- the Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, and
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709-1294
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria,
| |
Collapse
|
26
|
Golovko AI, Bonitenko EY, Ivanov MB, Barinov VA, Zatsepin EP. The neurochemical bases of the pharmacological activity of ligands of monoamine-transport systems. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW, Cao J, Holy M, Steinkellner T, Rudnick G, Baumann MH, Ecker GF, Newman AH, Sitte HH. Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. Mol Pharmacol 2016; 89:165-75. [PMID: 26519222 PMCID: PMC4702095 DOI: 10.1124/mol.115.101394] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.
Collapse
Affiliation(s)
- Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Peter S Hasenhuetl
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - John S Partilla
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Amir Seddik
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Yuan-Wei Zhang
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Jianjing Cao
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Gary Rudnick
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Michael H Baumann
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Gerhard F Ecker
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Amy Hauck Newman
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| |
Collapse
|
28
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2015; 67:1005-24. [PMID: 26408528 PMCID: PMC4630566 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB. Alpha-ethyltryptamines as dual dopamine-serotonin releasers. Bioorg Med Chem Lett 2014; 24:4754-4758. [PMID: 25193229 DOI: 10.1016/j.bmcl.2014.07.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.
Collapse
Affiliation(s)
- Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Antonio Landavazo
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - John S Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Kevin M Page
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Michael H Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
31
|
Blough BE, Landavazo A, Partilla JS, Baumann MH, Decker AM, Page KM, Rothman RB. Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics. ACS Med Chem Lett 2014; 5:623-7. [PMID: 24944732 DOI: 10.1021/ml500113s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/15/2014] [Indexed: 11/29/2022] Open
Abstract
As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.
Collapse
Affiliation(s)
- Bruce E. Blough
- Center for Drug
Discovery, Discovery-Science-Technology, RTI International, 3040
Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Antonio Landavazo
- Center for Drug
Discovery, Discovery-Science-Technology, RTI International, 3040
Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural
Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural
Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Ann M. Decker
- Center for Drug
Discovery, Discovery-Science-Technology, RTI International, 3040
Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Kevin M. Page
- Center for Drug
Discovery, Discovery-Science-Technology, RTI International, 3040
Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural
Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
32
|
Schmitt KC, Rothman RB, Reith MEA. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 2013; 346:2-10. [PMID: 23568856 PMCID: PMC3684841 DOI: 10.1124/jpet.111.191056] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/02/2013] [Indexed: 01/20/2023] Open
Abstract
The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein-coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders.
Collapse
Affiliation(s)
- Kyle C Schmitt
- Department of Neurosurgery, New York University School of Medicine, 455 First Ave., Public Health Laboratories (8th Floor), New York, New York 10016, USA.
| | | | | |
Collapse
|
33
|
Seddik A, Holy M, Weissensteiner R, Zdrazil B, Sitte HH, Ecker GF. Probing the Selectivity of Monoamine Transporter Substrates by Means of Molecular Modeling. Mol Inform 2013; 32:409-413. [PMID: 23956802 PMCID: PMC3743209 DOI: 10.1002/minf.201300013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Amir Seddik
- University of Vienna, Department of Medicinal Chemistry, Pharmacoinformatics Research Group Vienna, Austria
| | | | | | | | | | | |
Collapse
|