1
|
Role of Ion Channels in the Chemotransduction and Mechanotransduction in Digestive Function and Feeding Behavior. Int J Mol Sci 2022; 23:ijms23169358. [PMID: 36012643 PMCID: PMC9409042 DOI: 10.3390/ijms23169358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The gastrointestinal tract constantly communicates with the environment, receiving and processing a wide range of information. The contents of the gastrointestinal tract and the gastrointestinal tract generate mechanical and chemical signals, which are essential for regulating digestive function and feeding behavior. There are many receptors here that sense intestinal contents, including nutrients, microbes, hormones, and small molecule compounds. In signal transduction, ion channels are indispensable as an essential component that can generate intracellular ionic changes or electrical signals. Ion channels generate electrical activity in numerous neurons and, more importantly, alter the action of non-neurons simply and effectively, and also affect satiety, molecular secretion, intestinal secretion, and motility through mechanisms of peripheral sensation, signaling, and altered cellular function. In this review, we focus on the identity of ion channels in chemosensing and mechanosensing in the gastrointestinal tract.
Collapse
|
2
|
Nitric Oxide: From Gastric Motility to Gastric Dysmotility. Int J Mol Sci 2021; 22:ijms22189990. [PMID: 34576155 PMCID: PMC8470306 DOI: 10.3390/ijms22189990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.
Collapse
|
3
|
Khalil M, Zhang Z, Abdel-Aziz H, Rabini S, Ammar R, Reeh P, Engel M. Dual opposing actions of STW 5 on TRP receptors mediate neuronal desensitisation in vitro. Life Sci 2020; 257:118112. [DOI: 10.1016/j.lfs.2020.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
4
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
5
|
Harada Y, Koseki J, Sekine H, Fujitsuka N, Kobayashi H. Role of Bitter Taste Receptors in Regulating Gastric Accommodation in Guinea Pigs. J Pharmacol Exp Ther 2019; 369:466-472. [PMID: 30967403 DOI: 10.1124/jpet.118.256008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
Taste stimulants play important roles in triggering digestion and absorption of nutrients and in toxin detection, under the control of the gut-brain axis. Bitter compounds regulate gut hormone secretion and gastrointestinal motility through bitter taste receptors (TAS2Rs) located in the taste buds on the tongue and in the enteroendocrine cells. Gastric accommodation (GA) is an important physiologic function. However, the role of TAS2R agonists in regulating GA remains unclear. To clarify whether GA is influenced by bitter stimulants, we examined the effect of TAS2R agonist denatonium benzoate (DB), administered intraorally and intragastrically, by measuring the consequent intrabag pressure in the proximal stomach of guinea pigs. Effects of the Kampo medicine rikkunshito (RKT) and its bitter components liquiritigenin and naringenin on GA were also examined. Intraoral DB (0.2 nmol/ml) administration enhanced GA. Intragastric DB administration (0.1 and 1 nmol/kg) promoted GA, whereas higher DB doses (30 μmol/kg) inhibited it. Similar changes in GA were observed with intragastric (1000 mg/kg) and intraoral (200 mg/ml) RKT administration. Liquiritigenin and naringenin also promoted GA. These findings suggest that GA is affected by the stimulation of TAS2Rs in the oral cavity or gut in guinea pigs.
Collapse
Affiliation(s)
- Yumi Harada
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Junichi Koseki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Hiroyuki Kobayashi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| |
Collapse
|
6
|
Ikeo K, Oshima T, Sei H, Kondo T, Fukui H, Watari J, Miwa H. Acotiamide improves stress-induced impaired gastric accommodation. Neurogastroenterol Motil 2017; 29. [PMID: 27860042 DOI: 10.1111/nmo.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric accommodation is a reflex reaction related to gastric reservoir function. Psychological stress, such as anxiety, inhibits gastric accommodation in humans. Acotiamide enhances the effect of acetylcholine in the enteric nervous system, enhances gastric contractility, and accelerates delayed gastric emptying. However, the effect of acotiamide on stress-induced impaired gastric accommodation remains unclear. Therefore, we examined the effect of acotiamide on gastric accommodation and stress-induced impaired gastric accommodation using a conscious guinea pig model. METHODS A polyethylene bag was inserted through the distal region of the gastric body into the proximal stomach of 5-week-old male Hartley guinea pigs. Gastric accommodation was evaluated by measuring the intrabag pressure in the proximal stomach after oral administration of a liquid meal. In the stress model, animals were subjected to water-avoidance stress. Acotiamide (Z-338) or nizatidine was administered subcutaneously. Fecal output was determined as the number of fecal pellets. KEY RESULTS Administration of the liquid meal significantly decreased intrabag pressure, indicating induction of gastric accommodation. Acotiamide treatment prolonged liquid meal-induced gastric accommodation and significantly increased the number of fecal pellets compared to controls. Water-avoidance stress significantly inhibited liquid meal-induced gastric accommodation. Pretreatment with acotiamide significantly improved stress-induced impaired gastric accommodation. The number of fecal pellets in the acotiamide group increased significantly compared to controls. Acotiamide, but not nizatidine, significantly decreased gastric emptying. CONCLUSIONS & INFERENCES Acotiamide prolongs gastric accommodation and improves stress-induced impaired gastric accommodation, indicating a potential role for acotiamide in the treatment of functional dyspepsia through its effects on gastric accommodation reactions.
Collapse
Affiliation(s)
- K Ikeo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - T Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - H Sei
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - T Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - H Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - J Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - H Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
7
|
Miwa H, Koseki J, Oshima T, Hattori T, Kase Y, Kondo T, Fukui H, Tomita T, Ohda Y, Watari J. Impairment of gastric accommodation induced by water-avoidance stress is mediated by 5-HT2B receptors. Neurogastroenterol Motil 2016; 28:765-78. [PMID: 26833428 DOI: 10.1111/nmo.12775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychological stress has been shown to impair gastric accommodation (GA), but its mechanism has not been elucidated. This study was conducted to clarify the role of 5-HT2B receptors in a guinea pig model of stress-induced impairment of GA. METHODS Gastric accommodation was evaluated by measuring the intrabag pressure in the proximal stomach after administration of a liquid meal. The guinea pigs were subjected to water-avoidance stress. The role of 5-HT2B receptors in impairment of GA was investigated by administering a 5-HT2B receptor agonist (BW723C86) or antagonist (SB215505), the traditional Japanese medicine rikkunshito (RKT), a muscarinic M3 receptor antagonist (1,1-dimethyl-4-diphenylacetoxypiperidium iodide [4-DAMP]), or a nitric oxide synthase inhibitor (Nω -nitro-L-arginine [L-NNA]). KEY RESULTS In normal animals, liquid meal-induced GA was inhibited by BW723C86, but was not affected by SB215505. The inhibition of GA by BW723C86 was reversed by co-administration of 4-DAMP. Compared to normal animals, GA in stressed animals was significantly inhibited. SB215505 and RKT significantly suppressed stress-induced impairment of GA. After meal administration, the level of cyclic guanosine monophosphate in gastric fundus tissue increased by approximately twofold in normal animals, but did not change in stressed animals. The inhibition of GA by L-NNA was suppressed by SB215505 or RKT. At a dose that did not affect GA in normal animals, BW723C86 exacerbated the impairment of GA in stressed animals. CONCLUSIONS AND INFERENCES Stress-induced impairment of GA may be mediated by an increased responsiveness of 5-HT2B receptors, and activation of the 5-HT2B receptor signaling pathway may have an inhibitory effect on nitric oxide function.
Collapse
Affiliation(s)
- H Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - J Koseki
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - T Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - T Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Y Kase
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - T Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - H Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - T Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Y Ohda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - J Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
8
|
Youn YH, Choi EJ, Lee YH, Oshima T, Miwa H, Park H. The effects of 5-hydroxytryptamine1a receptor agonist, buspirone on the gastric fundus accommodation in an animal model using guinea pigs. Neurogastroenterol Motil 2015; 27:532-41. [PMID: 25677141 DOI: 10.1111/nmo.12523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND To date, few animal experiments have been conducted to examine the effects and mechanisms of buspirone in inducing the relaxation of the gastric fundus. The aim of this study is to examine the effects and mechanisms of buspirone, 5-HT(1a) receptor agonist, in the accommodation of gastric fundus muscle in an animal experimental model using guinea pigs. METHODS In the current study, we performed an immunohistochemistry for 5-HT(1a) receptors in the tissue samples collected from the stomach of guinea pig, an ex vivo experiment to examine the electrical field stimulation (EFS)-induced relaxation of the circular muscle in the gastric fundus in guinea pigs and an in vivo experiment to measure the intragastric pressure through the insertion of the balloon catheter in the fundus. KEY RESULTS Immunohistochemical stains for 5-HT(1a) receptor could confirm the expression of 5-HT(1a) receptor in guinea pig stomach. There was a significant dose-dependent inhibition of the EFS-induced relaxation of fundic muscle strips following the treatment with WAY-100635 (5-HT(1a) antagonist), but this was significantly improved following the treatment with buspirone. An in vivo measurement of the gastric fundic tone showed that there was a significant decrease in the intragastric pressure at same volume by pretreatment with buspirone as compared with the vehicle control, but this could be prevented with the treatment with WAY-100635. CONCLUSIONS & INFERENCES Based on our results, it can be concluded that buspirone is effective in relaxing the gastric fundus via 5-HT(1a) receptor pathway in both in vitro and in vivo experimental models using guinea pigs.
Collapse
Affiliation(s)
- Y H Youn
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
9
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|