1
|
LaCourse H, Bennett L, Falstad A, Asmus F, Smith M, Davis R, Harrington K, Giuvelis D, King T, Stevenson GW. D 1 dopamine / mu opioid receptor interactions in operant conditioning assays of pain-depressed responding and drug-induced rate suppression, and a conditioned place preference procedure: assessment of therapeutic index in male Sprague Dawley rats. Psychopharmacology (Berl) 2025; 242:751-762. [PMID: 39832015 DOI: 10.1007/s00213-025-06743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
RATIONALE AND OBJECTIVES In vivo receptor interactions vary as a function of behavioral endpoint, with key differences between reflexive and non-reflexive measures that assess the motivational aspects of pain and pain relief. There have been no assessments of D1 dopamine agonist / mu opioid receptor (MOR) agonist interactions in non-reflexive behavioral measures of pain. We examined the hypothesis that D1/MOR mixtures show enhanced effectiveness in blocking pain depressed behaviors while showing decreased side effects such as sedation and drug reward. METHODS SKF82958 and methadone were used as selective/high efficacy D1 and mu agonists, respectively. An FR10 operant schedule was utilized in the presence and absence of a lactic acid inflammatory pain-like manipulation, to measure antinociceptive and operant-rate-suppressing effects, respectively. Rewarding properties of the drug combinations were determined using a conditioned place preference procedure. RESULTS Methadone alone, but not SKF82958 alone, produced dose-dependent restoration of pain-depressed responding. Both SKF82958 and methadone produced dose-dependent response rate suppression. Three fixed proportion mixtures, based on the relative potencies of the drugs in the rate suppression assay, produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that the 0.17:1 mixture produced supra-additive antinociception and additive sedation. The 0.055:1 mixture produced additive antinociception with sub-additive sedation, and the 0.018:1 mixture had the highest therapeutic index (TI) relative to other mixtures and drugs alone. The antinociceptive doses and component doses for the 0.018:1 mixture did not produce conditioned place preference. CONCLUSIONS These results suggest that D1-selective dopamine agonists may have utility as candidate opioid-sparing analgesics.
Collapse
MESH Headings
- Animals
- Male
- Conditioning, Operant/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Rats, Sprague-Dawley
- Rats
- Dose-Response Relationship, Drug
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/administration & dosage
- Pain/drug therapy
- Methadone/pharmacology
- Methadone/administration & dosage
- Benzazepines/pharmacology
- Benzazepines/administration & dosage
- Reward
- Dopamine Agonists/pharmacology
- Dopamine Agonists/administration & dosage
Collapse
Affiliation(s)
- Hannah LaCourse
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Lily Bennett
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - April Falstad
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Francesca Asmus
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Meghan Smith
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Ravin Davis
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Kylee Harrington
- Department of Psychology, University of New England, Biddeford, ME, USA
| | - Denise Giuvelis
- Behavior Core, COBRE, University of New England, Biddeford, ME, USA
| | - Tamara King
- Department of Physiology, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME, USA.
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA.
| |
Collapse
|
2
|
Lewter LA, Woodhouse K, Tiruveedhula VVNPB, Cook JM, Li JX. Antinociceptive Effects of α2/ α3-Subtype-Selective GABA A Receptor Positive Allosteric Modulators KRM-II-81 and NS16085 in Male Rats: Behavioral Specificity. J Pharmacol Exp Ther 2024; 391:389-398. [PMID: 38670800 PMCID: PMC11585310 DOI: 10.1124/jpet.123.002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies suggest that among the gamma-aminobutyric acid type A (GABAA)receptor subtype heterogeneity, α2/α3 subunits of GABAA receptors mediate pain processing. Therefore, α2/α3 subtype-selective GABAA receptor-positive allosteric modulators (PAMs) may be candidate analgesics. Antinociceptive effects of α2/α3 subtype-selective GABAA receptor PAMs have been reported, but the behavioral effects of these compounds have not been systematically evaluated. This study examined the behavioral effects of two α2/α3 subtype-selective GABAA receptor PAMs, KRM-II-81 and NS16085, in male rats. The antinociceptive effects of KRM-II-81 and NS16085 were examined using rat models of inflammatory (complete Freund's adjuvant) and neuropathic pain (chronic constriction injury). The effect of KRM-II-81 on affective pain was measured using the place escape/avoidance paradigm (PEAP). Rate-response of food-maintained operant responding, horizontal wire test, and the spontaneous alternation T-maze were assessed to study the side-effect profiles of KRM-II-81 and NS16085. The benzodiazepine midazolam was used as a comparator in these studies. KRM-II-81 and NS16085 attenuated mechanical allodynia but not thermal hyperalgesia in both pain states, and their effects were attenuated by the benzodiazepine receptor antagonist flumazenil. KRM-II-81 attenuated affective pain-related behavior in the PEAP test. In the operant responding procedure and horizontal wire test, only midazolam produced significant effects at the dose that produced maximal antinociception. In the T-maze assay, only midazolam significantly decreased the percentage of alternation at an antinociceptive dose. Thus, KRM-II-81 and NS16085 but not midazolam selectively produced antinociceptive effects. Collectively, these data suggest that α2/α3 subtype-selective GABAA PAMs could be a novel class of analgesics and warrant further investigation. SIGNIFICANCE STATEMENT: This study demonstrates that α2/α3 subtype-selective GABAA PAMs KRM-II-81 and NS16085 produce selective antinociceptive effects devoid of sedation, myorelaxation, and cognitive impairment in two rat models of persistent pain. This study supports the development of α2/α3 subtype-selective GABAA PAMs, rather than classical benzodiazepines, as safe and novel analgesics for pain management.
Collapse
Affiliation(s)
- Lakeisha A Lewter
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York (L.A.L., K.W., J.-X.L.); and Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., J.M.C.)
| | - Kristen Woodhouse
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York (L.A.L., K.W., J.-X.L.); and Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., J.M.C.)
| | - V V N Phani Babu Tiruveedhula
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York (L.A.L., K.W., J.-X.L.); and Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., J.M.C.)
| | - James M Cook
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York (L.A.L., K.W., J.-X.L.); and Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., J.M.C.)
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York (L.A.L., K.W., J.-X.L.); and Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., J.M.C.)
| |
Collapse
|
3
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
4
|
Siemian JN, Woodhouse K, Liu DH, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI reduces abuse-related effects of morphine: self-administration and drug discrimination. Psychopharmacology (Berl) 2024; 241:479-487. [PMID: 38159161 PMCID: PMC11955926 DOI: 10.1007/s00213-023-06524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE Increasing evidence shows that imidazoline I2 receptor agonists enhance opioid-induced analgesia, suggesting that the combination of I2 receptor agonists with opioids could be a favorable strategy for pain control. However, the effect of I2 receptor agonists on the abuse liability of opioids is unknown. This study examined the impact of the I2 receptor agonist 2-BFI on some abuse-related behavioral effects of the opioid morphine in rats. OBJECTIVES The von Frey filament test was used to determine the antinociceptive effects of 2-BFI (intravenous, i.v.) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. IV self-administration was used to assess the reinforcing effects of 2-BFI alone and to assess the effects of non-contingent injections of 2-BFI (i.p.) on morphine self-administration. A two-lever drug discrimination paradigm in which rats were trained to discriminate 3.2 mg/kg morphine (i.p.) from saline was used to examine whether 2-BFI or another I2 receptor agonist 2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride (BU224) affected the discriminative stimulus effects of morphine. RESULTS 2-BFI could not maintain reliable self-administration behavior in rats with no pain or CFA-treated inflammatory pain. However, pretreatment with 2-BFI (i.p.) produced dose-dependent decreases in the dose-effect curve of morphine self-administration. Both 2-BFI and BU224 did not substitute for morphine but significantly attenuated the discriminative stimulus effects of morphine. CONCLUSIONS These results suggest that I2 receptor agonists do not enhance, but in fact appear to decrease, the abuse liability of opioids, further supporting the potential utility of I2 receptor agonist-opioid combination therapy for pain control.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kristen Woodhouse
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Haile CN, Baker MD, Sanchez SA, Lopez Arteaga CA, Duddupudi AL, Cuny GD, Norton EB, Kosten TR, Kosten TA. An Immunconjugate Vaccine Alters Distribution and Reduces the Antinociceptive, Behavioral and Physiological Effects of Fentanyl in Male and Female Rats. Pharmaceutics 2022; 14:2290. [PMID: 36365109 PMCID: PMC9694531 DOI: 10.3390/pharmaceutics14112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/15/2023] Open
Abstract
Fentanyl (FEN) is a potent synthetic opioid associated with increasing incidence of opioid use disorder (OUD) and fatal opioid overdose. Vaccine immunotherapy for FEN-associated disorders may be a viable therapeutic strategy. Here, we expand and confirm our previous study in mice showing immunological and antinociception efficacy of our FEN vaccine administered with the adjuvant dmLT. In this study, immunized male and female rats produced significant levels of anti-FEN antibodies that were highly effective at neutralizing FEN-induced antinociception in the tail flick assay and hot plate assays. The vaccine also decreased FEN brain levels following drug administration. Immunization blocked FEN-induced, but not morphine-induced, rate-disrupting effects on schedule-controlled responding. Vaccination prevented decreases on physiological measures (oxygen saturation, heart rate) and reduction in overall activity following FEN administration in male rats. The impact of FEN on these measures was greater in unvaccinated male rats compared to unvaccinated female rats. Cross-reactivity assays showed anti-FEN antibodies bound to FEN and sufentanil but not to morphine, methadone, buprenorphine, or oxycodone. These data support further clinical development of this vaccine to address OUD in humans.
Collapse
Affiliation(s)
- Colin N. Haile
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Miah D. Baker
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Sergio A. Sanchez
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | | | - Anantha L. Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Gregory D. Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas R. Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
| | - Therese A. Kosten
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
7
|
Doyle MR, Gannon BM, Mesmin MP, Collins GT. Application of dose-addition analyses to characterize the abuse-related effects of drug mixtures. J Exp Anal Behav 2022; 117:442-456. [PMID: 35142382 PMCID: PMC9327442 DOI: 10.1002/jeab.741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/12/2022]
Abstract
Polysubstance use makes up a majority of drug use, yet relatively few studies investigate the abuse-related effects of drug mixtures. Dose-addition analyses provide a rigorous and quantitative method to determine the nature of the interaction (i.e., supraadditive, additive, or subadditive) between two or more drugs. As briefly reviewed here, studies in rhesus monkeys have applied dose-addition analyses to group level data to characterize the nature of the interaction between the reinforcing effects of stimulants and opioids (e.g., mixtures of cocaine + heroin). Building upon these foundational studies, more recent work has applied dose-addition analyses to better understand the nature of the interaction between caffeine and illicit stimulants such as MDPV and methamphetamine in rats. In addition to utilizing a variety of operant procedures, including drug discrimination, drug self-administration, and drug-primed reinstatement, these studies have incorporated potency and effectiveness ratios as a method for both statistical analysis and visualization of departures from additivity at both the group and individual subject level. As such, dose-addition analyses represent a powerful and underutilized approach to quantify the nature of drug-drug interactions that can be applied to a variety of abuse-related endpoints in order to better understand the behavioral pharmacology of polysubstance use.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio.,South Texas Veterans Health Care System, San Antonio
| | - Brenda M Gannon
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Melson P Mesmin
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio.,South Texas Veterans Health Care System, San Antonio
| |
Collapse
|
8
|
Rahman MA, Keck TM, Poe MM, Sharmin D, Cook JM, Fischer BD. Synergistic antihyperalgesic and antinociceptive effects of morphine and methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024): a positive allosteric modulator at α2GABA A and α3GABA A receptors. Psychopharmacology (Berl) 2021; 238:1585-1592. [PMID: 33585961 PMCID: PMC8141038 DOI: 10.1007/s00213-021-05791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
RATIONALE Opioid and GABAA receptors are both located in central nociceptive pathways, and compounds that activate these receptors have pain-relieving properties. To date, the interactive effects of concurrent administration of these compounds in preclinical models of pain-like behaviors have not been assessed. OBJECTIVE The purpose of this study was to examine the interactive effects of the μ-opioid agonist morphine and the α2GABAA and α3GABAA receptor positive allosteric modulator methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024) in preclinical models of mechanical hyperalgesia and thermal nociception. METHODS The antihyperalgesic and antinociceptive effects of morphine and MP-III-024 administered alone were assessed initially, followed by fixed-ratio mixtures of MP-III-024/morphine combinations. Drug interaction data were analyzed using isobolographic and dose-addition analyses. All studies were conducted in male CD-1 mice. RESULTS In the assay of mechanical hyperalgesia, each compound produced dose-dependent antihyperalgesic effects, whereas only morphine was effective on thermal nociception. Fixed-ratio mixtures of MP-III-024/morphine were also dose-dependently effective in both procedures. These drug combination studies revealed that morphine and MP-III-024 produced supra-additive (synergistic) effects in both assays, depending on their relative proportions. CONCLUSIONS These results demonstrate an interaction between α2GABAA and α3GABAA receptor- and μ-opioid receptor-mediated signals and suggest that combination therapy may be useful for the treatment of pain-related disorders.
Collapse
Affiliation(s)
- Mohammad A. Rahman
- Rowan University, Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Glassboro, NJ 08028, USA
| | - Thomas M. Keck
- Rowan University, Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Glassboro, NJ 08028, USA
| | - Michael M. Poe
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - Dishary Sharmin
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - Bradford D. Fischer
- Cooper Medical School of Rowan University, Department of Biomedical Sciences Camden, NJ 08103, USA,Corresponding Author:; Phone: (856) 361-2869
| |
Collapse
|
9
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
10
|
Zhou Z, Qiu N, Ou Y, Wei Q, Tang W, Zheng M, Xing Y, Li JJ, Ling Y, Li J, Zhu Q. N-Demethylsinomenine, an active metabolite of sinomenine, attenuates chronic neuropathic and inflammatory pain in mice. Sci Rep 2021; 11:9300. [PMID: 33927244 PMCID: PMC8085237 DOI: 10.1038/s41598-021-88521-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic pain is a significant public health problem that afflicts nearly 30% of the global population, but current pharmacotherapies are insufficient. Previous report indicated that N-demethylsinomenine, an active metabolite of sinomenine, is efficacious against postoperative pain. The present study investigated whether N-demethylsinomenine is effective for chronic painful conditions or whether repeated treatment alters its effect. Both chronic constriction injury (CCI) surgery and complete Freund’s adjuvant (CFA) intraplantar injection induced significant and reliable mechanical allodynia at least for 7 days. Acute treatment with N-demethylsinomenine (10–40 mg/kg, i.p.) dose-dependently attenuated the mechanical allodynia both in CCI-induced neuropathic pain and CFA-induced inflammatory pain in mice. The potency of N-demethylsinomenine for reducing CFA-induced mechanical allodynia was slightly higher than sinomenine. During the period of repeated treatment, N-demethylsinomenine maintained its anti-allodynic effect against both neuropathic and inflammatory pain without producing carry-over effect. Pretreatment with bicuculline, a selective γ-aminobutyric acid type A (GABAA) receptor antagonist, almost completely blocked the anti-allodynia of N-demethylsinomenine (40 mg/kg) both in CCI and CFA-treated mice. Our findings indicated that N-demethylsinomenine exhibits GABAA receptor-mediated anti-allodynic effects in mouse models of neuropathic and inflammatory pain, suggesting it may be a useful novel pharmacotherapy for the control of chronic pain.
Collapse
Affiliation(s)
- Zhiyong Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Nanqing Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yuntao Ou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Qianqian Wei
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Wenting Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Mingcong Zheng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yaluan Xing
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Jie-Jia Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Junxu Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| | - Qing Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
11
|
de Moura FB, Bergman J. Enhancement of Opioid Antinociception by Nicotinic Ligands. J Pharmacol Exp Ther 2021; 377:100-107. [PMID: 33441370 PMCID: PMC7985615 DOI: 10.1124/jpet.120.000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
Nicotine has previously been shown to augment the antinociceptive effects of μ-opioid agonists in squirrel monkeys without producing a concomitant increase in behavioral disruption. The present studies were conducted to extend these findings by determining the ability of the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline to selectively augment the antinociceptive effects of the μ-opioid receptor (MOR) full agonist fentanyl, the MOR partial agonist nalbuphine, and the κ-opioid receptor (KOR) agonist U69,593 in male squirrel monkeys. Results indicate that both nAChR ligands selectively increased the antinociceptive effects of nalbuphine and that epibatidine increased the antinociceptive effects of U69,593 without altering effects on operant behavior. However, neither epibatidine nor varenicline enhanced the antinociceptive effects of fentanyl, perhaps due to its high efficacy. The enhancement of nalbuphine's antinociceptive effects by epibatidine, but not varenicline, could be antagonized by either mecamylamine or dihydro-β-erythroidine, consistent with α4β2 mediation of epibatidine's effects but suggesting the involvement of non-nAChR mechanisms in the effects of varenicline. The present results support previous findings showing that an nAChR agonist can serve as an adjuvant for MOR antinociception and, based on results with U69,593, further indicate that the adjuvant effects of nAChR drugs may also apply to antinociception produced by KOR. Our findings support the further evaluation of nAChR agonists as adjuvants of opioid pharmacotherapy for pain management and point out the need for further investigation into the mechanisms by which they produce opioid-adjuvant effects. SIGNIFICANCE STATEMENT: Nicotine has been shown to augment the antinociceptive effects of μ-opioid receptor analgesics without exacerbating their effects on operant performance. The present study demonstrates that the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline can also augment the antinociceptive effects of nalbuphine, as well as those of a κ-opioid receptor agonist, without concomitantly exacerbating their behaviorally disruptive effects. These findings support the view that nAChR agonists and partial agonists may have potential as adjuvant therapies for opioid-based analgesics.
Collapse
Affiliation(s)
- Fernando B de Moura
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Sala E, Ferrari F, Lanza M, Milia C, Sabatini C, Bonazzi A, Comi E, Borsi Franchini M, Caselli G, Rovati LC. Improved efficacy, tolerance, safety, and abuse liability profile of the combination of CR4056 and morphine over morphine alone in rodent models. Br J Pharmacol 2020; 177:3291-3308. [PMID: 32154915 PMCID: PMC7312436 DOI: 10.1111/bph.15049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Prolonged use of opioids causes analgesic tolerance and adverse effects including constipation and dependence. Compounds targeting imidazoline I2 receptors are known to potentiate opioid analgesia in rodents. We investigated whether combination with the I2 receptor ligand CR4056 could improve efficacy and safety of morphine and explored the mechanisms of the CR4056-opioid interaction. EXPERIMENTAL APPROACH We used the complete Freund's adjuvant (CFA) model in rats to study the effects of treatments on hyperalgesia, morphine tolerance and microglia activation as measured by immunofluorescence. Opioid-induced adverse effects were assessed in rodent models of morphine-induced constipation, sedation (open field, sedation rating scale, and rotarod), physical dependence (naloxone-induced withdrawal), and abuse (conditioned place preference-associated reward). Chemiluminescence assays tested CR4056 as allosteric modulator of μ-opioid receptors. KEY RESULTS CR4056 (ED50 = 4.88 mg·kg-1 ) and morphine (ED50 = 2.07 mg·kg-1 ) synergized in reducing CFA-induced hyperalgesia (ED50 = 0.52 mg·kg-1 ; 1:1 combination). Consistently, low doses of CR4056 (1 mg·kg-1 ) spared one third of the cumulative morphine dose administered during 4 days and prevented/reversed the development of tolerance to morphine anti-hyperalgesia. These opioid-sparing effects were associated with decreased activation of microglia, independent of CR4056 interactions on μ-opioid receptors. Importantly, the low doses of CR4056 and morphine that synergize in analgesia did not induce constipation, sedation, physical dependence, or place preference. CONCLUSION AND IMPLICATIONS We showed selective synergism between CR4056 and morphine as analgesics. Their combination showed an improved safety and abuse liability profile over morphine alone. CR4056 could be developed as an opioid-sparing drug in multimodal analgesia.
Collapse
Affiliation(s)
- Emanuele Sala
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | - Chiara Milia
- School of Medicine and SurgeryUniversity of Milano ‐ BicoccaMonzaItaly
| | - Chiara Sabatini
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | | | | | | |
Collapse
|
13
|
Coutens B, Derreumaux C, Labaste F, Minville V, Guiard BP, Moulédous L, Bounes V, Roussin A, Frances B. Efficacy of multimodal analgesic treatment of severe traumatic acute pain in mice pretreated with chronic high dose of buprenorphine inducing mechanical allodynia. Eur J Pharmacol 2020; 875:172884. [PMID: 31870829 DOI: 10.1016/j.ejphar.2019.172884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Managing severe acute nociceptive pain in buprenorphine-maintained individuals for opioid use disorder management is challenging owing to the high affinity and very slow dissociation of buprenorphine from μ-opioid receptors that hinders the use of full agonist opioid analgesics. In a translational approach, the aim of this study was to use an animal setting to investigate the effects of a chronic high dose of buprenorphine treatment on nociceptive thresholds before and after applying a severe acute nociceptive traumatic surgery stimulus and to screen postoperative pharmacological analgesic strategies. A chronic treatment of mice with a high dose of buprenorphine (BUP HD, 2 × 200 μg/kg/day; i.p.) revealed significant mechanical allodynia. One and two days after having discontinued buprenorphine administration and having induced a severe nociceptive acute pain by a closed tibial fracture, acute administration of morphine at a dose which has analgesic effects in absence of pretreatment (4.5 mg/kg; i.p.), was ineffective to reduce pain in the BUP HD group. However, mimicking multimodal analgesia strategy used in human postoperative context, the combination of morphine (administered at the same dose) with a NMDA receptor antagonist (ketamine) or an NSAID (ketoprofen) produced antinociceptive responses in these animals. The mouse model of closed tibial fracture could be useful to identify analgesic strategies of postoperative pain for patients with chronic exposure to opioids and suffering from hyperalgesia.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Céline Derreumaux
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - François Labaste
- Hôpital de Rangueil, Centre Hospitalier Universitaire de Toulouse-Rangueil, 31300, Toulouse, France
| | - Vincent Minville
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Bruno Pierre Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France.
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Vincent Bounes
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Anne Roussin
- Equipe de Pharmacoépidémiologie UMR1027, Université Paul Sabatier Toulouse III, 31000, Toulouse, France; Centre d'Addictovigilance, Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire de Toulouse-Purpan, 31000, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| |
Collapse
|
14
|
Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol Rev 2020; 72:50-79. [PMID: 31819014 DOI: 10.1124/pr.118.016311] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I1, I2, and I3) have been proposed and the understanding of each has seen differing progress over the decades. I1 receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I1/α 2-adrenoceptor selectivity. Newer I1 receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride] have little to no activity on α 2-adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I2 receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I2 receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I2 receptor agonist, CR4056 [2-phenyl-6-(1H-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I2 receptor-based first-in-class nonopioid analgesic. The understanding of I3 receptors is relatively limited. Existing data suggest that I3 receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic β-cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I1 and I2) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.
Collapse
Affiliation(s)
- Pascal Bousquet
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Alan Hudson
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jesús A García-Sevilla
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jun-Xu Li
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| |
Collapse
|
15
|
Barreto de Moura F, Withey SL, Bergman J. Enhancement of Opioid Antinociception by Nicotine. J Pharmacol Exp Ther 2019; 371:624-632. [PMID: 31527281 PMCID: PMC6863460 DOI: 10.1124/jpet.119.261438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
Nicotine can produce antinociception in preclinical pain models; however, the ability of nicotine to augment the antinociceptive effects of opioid agonists has not been investigated. The present experiments were conducted to determine how nicotine modifies the effects of opioid agonists differing in efficacy. Male squirrel monkeys responded for the delivery of milk under a fixed ratio 10 schedule of reinforcement. During the 30-second timeout period following each milk delivery, the subject's tail was immersed in 35, 50, 52, or 55°C water, and the latency to remove the tail was recorded. Dose-response functions for tail-withdrawal latency and operant performance were determined for fentanyl, oxycodone, buprenorphine, and nalbuphine alone and after treatment with nicotine. Excepting nalbuphine, all opioids produced dose-related disruptions in food-maintained responding and increases in tail-withdrawal latency at each water temperature. Nicotine did not exacerbate the behaviorally disruptive effects of the μ-opioids on operant performance but produced a significant mecamylamine-sensitive enhancement of the antinociceptive potency of each opioid. Failure of arecoline to augment the antinociceptive effects of oxycodone and antagonism by mecamylamine suggests this nicotine-induced augmentation of prescription opioid antinociception was nicotinic acetylcholine receptor (nAChR) mediated. This was reflected in leftward shifts in the antinociceptive dose-response curve of each opioid, ranging from 2- to 7-fold increases in the potency of oxycodone across all water temperatures to an approximately 70-fold leftward shift in the antinociceptive dose-response curve of nalbuphine at the lower and intermediate water temperatures. These results suggest that nicotine may enhance μ-opioid antinociceptive effects without concomitantly exacerbating their behaviorally disruptive effects. SIGNIFICANCE STATEMENT: Prescription opioids remain the most effective pain-management pharmacotherapeutics but are limited by their adverse effects. The present results indicate that nicotine enhances antinociceptive effects of various opioid agonists in nonhuman primates without increasing their disruptive effects on operant performance. These results suggest that nicotine might function as an opioid adjuvant for pain management by enabling decreased clinically effective analgesic doses of prescription opioids without exacerbating their adverse behavioral effects.
Collapse
Affiliation(s)
- Fernando Barreto de Moura
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| | - Sarah Louise Withey
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| |
Collapse
|
16
|
Martin JA, Werner CT, Mitra S, Zhong P, Wang ZJ, Gobira PH, Stewart AF, Zhang J, Erias K, Siemian JN, Hagarty D, Mueller LE, Neve RL, Li JX, Chandra R, Dietz KC, Lobo MK, Gancarz AM, Yan Z, Dietz DM. A novel role for the actin-binding protein drebrin in regulating opiate addiction. Nat Commun 2019; 10:4140. [PMID: 31515501 PMCID: PMC6742638 DOI: 10.1038/s41467-019-12122-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Persistent transcriptional and morphological events in the nucleus accumbens (NAc) and other brain reward regions contribute to the long-lasting behavioral adaptations that characterize drug addiction. Opiate exposure reduces the density of dendritic spines on medium spiny neurons of the NAc; however, the underlying transcriptional and cellular events mediating this remain unknown. We show that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc. Using virus-mediated gene transfer, we show that drebrin overexpression in the NAc is sufficient to decrease drug seeking and increase dendritic spine density, whereas drebrin knockdown potentiates these effects. We demonstrate that drebrin is transcriptionally repressed by the histone modifier HDAC2, which is relieved by pharmacological inhibition of histone deacetylases. Importantly, we demonstrate that heroin-induced adaptations occur only in the D1+ subset of medium spiny neurons. These findings establish an essential role for drebrin, and upstream transcriptional regulator HDAC2, in opiate-induced plasticity in the NAc. The underlying transcriptional and cellular events mediating the reduction of dendritic spines on medium spiny neurons of the nucleus accumbens (NAc) remains unknown. Here, authors demonstrate that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc, which is shown to be transcriptionally repressed by the histone modifier HDAC2, and that overexpression of drebrin is sufficient to decrease drug seeking and increase dendritic spine density
Collapse
Affiliation(s)
- Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andrew F Stewart
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jay Zhang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Justin N Siemian
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Devin Hagarty
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, 93311, USA
| | - Lauren E Mueller
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen C Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy M Gancarz
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, 93311, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA. .,Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
17
|
Siemian JN, Shang L, Seaman RW, Zhu Q, Zhang Y, Li JX. Effects of imidazoline I2 receptor agonists on reserpine-induced hyperalgesia and depressive-like behavior in rats. Behav Pharmacol 2019; 30:429-434. [PMID: 30383551 PMCID: PMC6494737 DOI: 10.1097/fbp.0000000000000454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pharmacotherapies for fibromyalgia treatment are lacking. This study examined the antinociceptive and antidepressant-like effects of imidazoline I2 receptor (I2R) agonists in a reserpine-induced model of fibromyalgia in rats. Rats were treated for 3 days with vehicle or reserpine. The von Frey filament test was used to assess the antinociceptive effects of I2 receptor agonists, and the forced swim test was used to assess the antidepressant-like effects of these drugs. 2-BFI (3.2-10 mg/kg, intraperitoneally), phenyzoline (17.8-56 mg/kg, intraperitoneally), and CR4056 (3.2-10 mg/kg, intraperitoneally) all dose-dependently produced significant antinociceptive effects, which were attenuated by the I2R antagonist idazoxan. Only CR4056 significantly reduced the immobility time in the forced swim test in both vehicle-treated and reserpine-treated rats. These data suggest that I2R agonists may be useful to treat fibromyalgia-related pain and comorbid depression.
Collapse
Affiliation(s)
- Justin N. Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Li Shang
- Department of Nursing, Affiliated Yantai Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Robert W. Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Qing Zhu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
18
|
Obeng S, Jali A, Zheng Y, Wang H, Schwienteck KL, Chen C, Stevens DL, Akbarali HI, Dewey WL, Banks ML, Liu-Chen LY, Selley DE, Zhang Y. Characterization of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN) as a Novel Opioid Receptor Modulator for Opioid Use Disorder Treatment. ACS Chem Neurosci 2019; 10:2518-2532. [PMID: 30758946 PMCID: PMC6520168 DOI: 10.1021/acschemneuro.9b00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The opioid crisis is a significant public health issue with more than 115 people dying from opioid overdose per day in the United States. The aim of the present study was to characterize the in vitro and in vivo pharmacological effects of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN), a μ opioid receptor (MOR) ligand that may be a potential candidate for opioid use disorder treatment that produces less withdrawal signs than naltrexone. The efficacy of NAN was compared to varying efficacy ligands at the MOR, and determined at the δ opioid receptor (DOR) and κ opioid receptor (KOR). NAN was identified as a low efficacy partial agonist for G-protein activation at the MOR and DOR, but had relatively high efficacy at the KOR. In contrast to high efficacy MOR agonists, NAN did not induce MOR internalization, downregulation, or desensitization, but it antagonized agonist-induced MOR internalization and stimulation of intracellular Ca2+ release. Opioid withdrawal studies conducted using morphine-pelleted mice demonstrated that NAN precipitated significantly less withdrawal signs than naltrexone at similar doses. Furthermore, NAN failed to produce fentanyl-like discriminative stimulus effects in rats up to doses that produced dose- and time-dependent antagonism of fentanyl. Overall, these results provide converging lines of evidence that NAN functions mainly as a MOR antagonist and support further consideration of NAN as a candidate medication for opioid use disorder treatment.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Kathryn L. Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Chongguang Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Mathew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
19
|
Combining opioids and non-opioids for pain management: Current status. Neuropharmacology 2019; 158:107619. [PMID: 31029588 DOI: 10.1016/j.neuropharm.2019.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
Pain remains a global health challenge. For decades, clinicians have been primarily relying on μ-opioid receptor (MOR) agonists and nonsteroidal anti-inflammatory drugs (NSAIDs) for pain management. MOR agonists remain the most efficacious analgesics available; however, adverse effects related to MOR agonists use are severe which often lead to forced drug discontinuation and inadequate pain relief. The recent opioid overdose epidemic urges the development of safer analgesics. Combination therapy is a well-established clinical pharmacotherapeutic strategy for the treatment of various clinical disorders. The combination of MOR agonists with non-MOR agonists may increase the analgesic potency of MOR agonists, reduce the development of tolerance and dependence, reduce the diversion and abuse, overdose, and reduce other clinically significant side effects associated with prolonged opioid use such as constipation. Overall, the combination therapy approach could substantially improve the therapeutic profile of MOR agonists. This review summarizes some recent developments in this field. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
|
20
|
Obeng S, Wang H, Jali A, Stevens DL, Akbarali HI, Dewey WL, Selley DE, Zhang Y. Structure-Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept" To Comprehend Their Functional Conversion. ACS Chem Neurosci 2019; 10:1075-1090. [PMID: 30156823 PMCID: PMC6405326 DOI: 10.1021/acschemneuro.8b00349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Structure-activity relationship (SAR) studies of numerous opioid ligands have shown that introduction of a methyl or ethyl group on the tertiary amino group at position 17 of the epoxymorphinan skeleton generally results in a mu opioid receptor (MOR) agonist while introduction of a cyclopropylmethyl group typically leads to an antagonist. Furthermore, it has been shown that introduction of heterocyclic ring systems at position 6 can favor antagonism. However, it was reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(2'-indolyl)acetamido]morphinan (INTA), which bears a cyclopropylmethyl group at position 17 and an indole ring at position 6, acted as a MOR agonist. We herein report a SAR study on INTA with a series of its complementary derivatives to understand how introduction of an indole moiety with α or β linkage at position 6 of the epoxymorphinan skeleton may influence ligand function. Interestingly, one of INTA derivatives, compound 15 (NAN) was identified as a MOR antagonist both in vitro and in vivo. Molecular modeling studies revealed that INTA and NAN may interact with different domains of the MOR allosteric binding site. In addition, INTA may interact with W293 and N150 residues found in the orthosteric site to stabilize MOR activation conformation while NAN does not. These results suggest that INTA and NAN may be bitopic ligands and the type of allosteric interactions with the MOR influence their functional activity. These insights along with our enriched comprehension of the "message-address" concept will to benefit future ligand design.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Male
- Mice
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Secondary
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
21
|
Schwienteck KL, Faunce KE, Rice KC, Obeng S, Zhang Y, Blough BE, Grim TW, Negus SS, Banks ML. Effectiveness comparisons of G-protein biased and unbiased mu opioid receptor ligands in warm water tail-withdrawal and drug discrimination in male and female rats. Neuropharmacology 2019; 150:200-209. [PMID: 30660628 DOI: 10.1016/j.neuropharm.2019.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
One emerging strategy to address the opioid crisis is the development of mu opioid receptor (MOR) ligands that preferentially signal the G-protein vs. β-arrestin pathway. The present study compared the relative potency and effectiveness of two G-protein biased (GPB)-MOR ligands TRV130 and SR-14968 to five unbiased MOR ligands (NAQ, nalbuphine, buprenorphine, morphine, and methadone) on therapeutic-related (e.g. antinociception) and abuse-related (e.g. discriminative stimulus effects) endpoints. Male and female rats were tested in a warm water tail-withdrawal procedure (50 °C) or trained to discriminate fentanyl (0.04 mg/kg, SC) from saline in a two-lever food-reinforced discrimination procedure. TRV130 and SR-14968 were approximately two-fold more potent to produce fentanyl stimulus effects vs. antinociception. Morphine, fentanyl, and methadone were significantly more potent in the fentanyl discrimination vs. tail withdrawal procedure. In addition, maximum antinociceptive and discriminative stimulus effects of fixed-proportion fentanyl/naltrexone mixtures (1:0.018, 1:0.054, 1:0.18, 1:0.3, and 1:0.54) were used to quantify 1) the relative in vivo efficacy of the two GPB-MOR agonists and five unbiased MOR ligands, and 2) potential species differences in MOR ligand effects between rats and monkeys. The efficacy-effect function generated from the fentanyl/naltrexone mixtures stratified the five unbiased ligands consistent with agonist-stimulated GTPγS binding (NAQ = nalbuphine < buprenorphine < morphine < methadone). However, TRV130 and SR-14968 produced greater antinociception and less fentanyl-like stimulus effects than was predicted. Furthermore, there was a significant positive correlation between rat and monkey antinociceptive effects. Overall, these results demonstrate GPB-MOR agonists produce undesirable abuse-related effects, albeit with slightly better potency and efficacy ratios compared to unbiased agonists. This article is part of the Special Issue entitled 'Opioid Neuropharmacology: Advances in treating pain and opioid addiction'.
Collapse
Affiliation(s)
- Kathryn L Schwienteck
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaycee E Faunce
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle, NC, USA
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - S Stevens Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
22
|
Cornelissen JC, Steele FF, Tenney RD, Obeng S, Rice KC, Zhang Y, Banks ML. Role of mu-opioid agonist efficacy on antinociceptive interactions between mu agonists and the nociceptin opioid peptide agonist Ro 64-6198 in rhesus monkeys. Eur J Pharmacol 2018; 844:175-182. [PMID: 30552903 DOI: 10.1016/j.ejphar.2018.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
Abstract
Mu-opioid receptor agonists are clinically effective analgesics, but also produce undesirable effects that limit their clinical utility. The nociceptin opioid peptide (NOP) receptor system also modulates nociception, and NOP agonists might be useful adjuncts to enhance the analgesic effects or attenuate the undesirable effects of mu-opioid agonists. The present study determined behavioral interactions between the NOP agonist (-)-Ro 64-6198 and mu-opioid ligands that vary in mu-opioid receptor efficacy (17-cyclopropylmethyl-3,14β-dihyroxy-4,5α-epoxy-6α-[(3 ́-isoquinolyl)acetamindo]morphinan (NAQ) < buprenorphine < nalbuphine < morphine = oxycodone < methadone) in male rhesus monkeys. For comparison, Ro 64-6198 interactions were also examined with the kappa-opioid receptor agonist nalfurafine. Each opioid ligand was examined alone and following fixed-dose Ro 64-6198 pretreatments in assays of thermal nociception (n = 3-4) and schedule-controlled responding (n = 3). Ro 64-6198 alone failed to produce significant antinociception up to doses (0.32 mg/kg, IM) that significantly decreased rates of responding. All opioid ligands, except NAQ and nalfurafine, produced dose- and thermal intensity-dependent antinociception. Ro 64-6198 enhanced the antinociceptive potency of buprenorphine, nalbuphine, methadone, and nalfurafine. Ro 64-6198 enhancement of nalbuphine antinociception was NOP antagonist SB-612111 reversible and occurred under a narrow range of dose and time conditions. All opioid ligands, except NAQ and buprenorphine, produced dose-dependent decreases in rates of responding. Ro 64-6198 did not significantly alter mu-opioid ligand rate-decreasing effects. Although these results suggest that NOP agonists may selectively enhance the antinociceptive vs. rate-suppressant effects of some mu-opioid agonists, this small enhancement occurred under a narrow range of conditions dampening enthusiasm for NOP agonists as candidate "opioid-sparing" adjuncts.
Collapse
Affiliation(s)
- Jeremy C Cornelissen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Floyd F Steele
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rebekah D Tenney
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Obeng S, Yuan Y, Jali A, Selley DE, Zhang Y. In vitro and in vivo functional profile characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ) as a low efficacy mu opioid receptor modulator. Eur J Pharmacol 2018; 827:32-40. [PMID: 29530590 PMCID: PMC5890425 DOI: 10.1016/j.ejphar.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Evidence has shown that downstream signaling by mu opioid receptor (MOR) agonists that recruit β-arrestin2 may lead to the development of tolerance. Also, it has been suggested that opioid receptor desensitization and cyclic AMP overshoot contributes to the development of tolerance and occurrence of withdrawal, respectively. Therefore, studies were conducted with 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a MOR selective partial agonist discovered in our laboratory, to characterize its effect on β-arrestin2 recruitment and precipitation of a cyclic AMP overshoot. DAMGO, a MOR full agonist dose-dependently increased β-arrestin2 association with the MOR, whereas NAQ did not. Moreover, NAQ displayed significant, concentration-dependent antagonism of DAMGO-induced β-arrestin2 recruitment. After prolonged morphine treatment of mMOR-CHO cells, there was a significant overshoot of cAMP upon exposure to naloxone, but not NAQ. Moreover, prolonged incubation of mMOR-CHO cells with NAQ did not result in desensitization nor downregulation of the MOR. In functional studies comparing NAQ with nalbuphine in the cAMP inhibition, Ca2+ flux and [35S]GTPγS binding assays, NAQ did not show agonism in the Ca2+ flux assay but showed partial agonism in the cAMP and [35S]GTPγS assays. Also, NAQ significantly antagonized DAMGO-induced intracellular Ca2+ increase. In conclusion, NAQ is a low efficacy MOR modulator that lacks β-arrestin2 recruitment function and does not induce cellular hallmarks of MOR adaptation and fails to precipitate a cellular manifestation of withdrawal in cells pretreated with morphine. These characteristics are desirable if NAQ is pursued for opioid abuse treatment development.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States.
| |
Collapse
|
24
|
Delta/mu opioid receptor interactions in operant conditioning assays of pain-depressed responding and drug-induced rate suppression: assessment of therapeutic index in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235:1609-1618. [PMID: 29572653 PMCID: PMC5924452 DOI: 10.1007/s00213-018-4876-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. METHODS A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. CONCLUSIONS The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
Collapse
|
25
|
Trace amine-associated receptor 1 agonists RO5263397 and RO5166017 attenuate quinpirole-induced yawning but not hypothermia in rats. Behav Pharmacol 2018; 28:590-593. [PMID: 28704278 DOI: 10.1097/fbp.0000000000000330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence suggests that trace amine-associated receptor 1 (TAAR1) is an important modulator of the dopaminergic system. Existing molecular evidence indicates that TAAR1 regulates dopamine levels through interactions with dopamine transporters and D2 receptors. However, investigations to date have not been exhaustive and other pathways may be involved. In this study, we used a well-described set of behaviors, quinpirole-induced yawning and hypothermia, to explore the potential interaction of TAAR1 and D3 receptors, which are members of the 'D2-like' dopamine receptor subfamily. Previous studies have shown that for D2/D3 receptor agonists, the induction of yawning is a D3 receptor-mediated effect, whereas the inhibition of yawning and induction of hypothermia are D2 receptor-mediated effects. Quinpirole produced an inverted U-shaped dose-effect curve for yawning, which was shifted downward dose-dependently by each of the TAAR1 agonists RO5263397 and RO5166017. Quinpirole also produced dose-dependent hypothermia, which was not affected by either TAAR1 agonist. These results suggest that TAAR1 agonists may interact with D3 receptors and/or its downstream pathways, as opposed to D2 receptors. These findings may shed light on a previously unexplored possibility for the mechanism of TAAR1-mediated effects.
Collapse
|
26
|
Cornelissen JC, Obeng S, Rice KC, Zhang Y, Negus SS, Banks ML. Application of Receptor Theory to the Design and Use of Fixed-Proportion Mu-Opioid Agonist and Antagonist Mixtures in Rhesus Monkeys. J Pharmacol Exp Ther 2018; 365:37-47. [PMID: 29330156 PMCID: PMC5830633 DOI: 10.1124/jpet.117.246439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 01/17/2023] Open
Abstract
Receptor theory predicts that fixed-proportion mixtures of a competitive, reversible agonist (e.g., fentanyl) and antagonist (e.g., naltrexone) at a common receptor [e.g., mu-opioid receptors (MORs)] will result in antagonist proportion-dependent decreases in apparent efficacy of the agonist/antagonist mixtures and downward shifts in mixture dose-effect functions. The present study tested this hypothesis by evaluating behavioral effects of fixed-proportion fentanyl/naltrexone mixtures in a warm-water tail-withdrawal procedure in rhesus monkeys (n = 4). Fentanyl (0.001-0.056 mg/kg) alone, naltrexone (0.032-1.0 mg/kg, i.m.) alone, and fixed-proportion mixtures of fentanyl/naltrexone (1:0.025, 1:0.074, and 1:0.22) were administered in a cumulative-dosing procedure, and the proportions were based on published fentanyl and naltrexone Kd values at MOR in monkey brain. Fentanyl alone produced dose-dependent antinociception at both 50 and 54°C thermal intensities. Up to the largest dose tested, naltrexone alone did not alter nociception. Consistent with receptor theory predictions, naltrexone produced a proportion-dependent decrease in the effectiveness of fentanyl/naltrexone mixtures to produce antinociception. The maximum effects of fentanyl, naltrexone, and each mixture were also used to generate an efficacy-effect scale for antinociception at each temperature, and this scale was evaluated for its utility in quantifying 1) efficacy requirements for antinociception at 50 and 54°C and 2) relative efficacy of six MOR agonists that vary in their efficacies to produce agonist-stimuated GTPγS binding in vitro (from lowest to highest efficacy: 17-cyclopropylmethyl-3,14β-dihyroxy-4,5α-epoxy-6α-[(3'-isoquinolyl)acetamindo]morphine, nalbuphine, buprenorphine, oxycodone, morphine, and methadone). These results suggest that fixed-proportion agonist/antagonist mixtures may offer a useful strategy to manipulate apparent drug efficacy for basic research or therapeutic purposes.
Collapse
Affiliation(s)
- Jeremy C Cornelissen
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Samuel Obeng
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Yan Zhang
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
27
|
Siemian JN, Wang K, Zhang Y, Li JX. Mechanisms of imidazoline I 2 receptor agonist-induced antinociception in rats: involvement of monoaminergic neurotransmission. Br J Pharmacol 2018; 175:1519-1534. [PMID: 29451703 DOI: 10.1111/bph.14161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 02/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the antinociceptive efficacies of imidazoline I2 receptor agonists have been established, the exact post-receptor mechanisms remain unknown. This study tested the hypothesis that monoaminergic transmission is critical for I2 receptor agonist-induced antinociception. EXPERIMENTAL APPROACH von Frey filaments were used to assess antinociceptive effects of two I2 receptor agonists, 2-BFI and CR4056 on chronic constriction injury (CCI)-induced neuropathic pain or complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. Rectal temperature was measured to assess hypothermic effects of 2-BFI. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg·kg-1 2-BFI (i.p.) from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. In each experiment, pharmacological mechanisms were investigated by combining 2-BFI or CR4056 with various pharmacological manipulations of the monoaminergic system including selective reuptake inhibition, monoamine depletion and monoamine receptor antagonism. KEY RESULTS In the CCI model, selective reuptake inhibitors of 5-HT (fluoxetine) or noradrenaline (desipramine), but not dopamine (GBR12909), enhanced 2-BFI-induced antinociception. Selective depletion of 5-HT or noradrenaline almost abolished 2-BFI-induced antinociception. 5-HT1A , 5-HT2A and α1 -adrenoceptor antagonists, but not other monoaminergic antagonists, attenuated 2-BFI and CR4056-induced antinociception in CCI and/or CFA models. However, none of these monoamine receptor antagonists significantly altered 2-BFI-induced hypothermia or discriminative stimulus effects. CONCLUSIONS AND IMPLICATIONS Antinociception induced by I2 receptor agonists was mediated by serotonergic and noradrenergic mechanisms with 5-HT1A , 5-HT2A and α1 -adrenoceptor being particularly important. In contrast, the hypothermic and discriminative stimulus effects of I2 receptor agonists were mediated by distinct, independent mechanisms.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Kaixuan Wang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.,School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
28
|
Siemian JN, Jia S, Liu JF, Zhang Y, Li JX. Neuroanatomical characterization of imidazoline I 2 receptor agonist-induced antinociception. Eur J Neurosci 2018. [PMID: 29514408 DOI: 10.1111/ejn.13899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic pain is a significant public health problem with a lack of safe and effective analgesics. The imidazoline I2 receptor (I2 R) is a promising analgesic target, but the neuroanatomical structures involved in mediating I2 R-associated behaviors are unknown. I2 Rs are enriched in the arcuate nucleus, dorsal raphe (DR), interpeduncular nucleus, lateral mammillary body, medial habenula, nucleus accumbens (NAc) and paraventricular nucleus; thus, this study investigated the antinociceptive and hypothermic effects of microinjections of the I2 R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI). In rats, intra-DR microinjections produced antinociception in complete Freund's adjuvant- and chronic constriction injury-induced pain models. Intra-NAc microinjections produced antinociception and increased noxious stimulus-associated side time in a place escape/avoidance paradigm. Intra-NAc pretreatment with the I2 R antagonist idazoxan but not the D1 receptor antagonist SCH23390 or the D2 receptor antagonist raclopride attenuated intra-NAc 2-BFI-induced antinociception. Intra-NAc idazoxan did not attenuate systemically administered 2-BFI-induced antinociception. Microinjections into the other regions did not produce antinociception, and in none of the regions produced hypothermia. These data suggest that I2 R activation in some but not all I2 R-enriched brain regions is sufficient to produce antinociception and supports the theory that different I2 R-associated effects are mediated via distinct receptor populations, which may in turn be distributed differentially throughout the CNS.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Shushan Jia
- Department of Anesthesiology, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, China
| | - Jian-Feng Liu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
29
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Siemian JN, LaMacchia ZM, Spreuer V, Tian J, Ignatowski TA, Paez PM, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI attenuates hypersensitivity and spinal neuroinflammation in a rat model of neuropathic pain. Biochem Pharmacol 2018; 153:260-268. [PMID: 29366977 DOI: 10.1016/j.bcp.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
Abstract
Chronic pain is a large, unmet public health problem. Recent studies have demonstrated the importance of neuroinflammation in the establishment and maintenance of chronic pain. However, pharmacotherapies that reduce neuroinflammation have not been successfully developed to treat chronic pain thus far. Several preclinical studies have established imidazoline I2 receptor (I2R) agonists as novel candidates for chronic pain therapies, and while some I2R ligands appear to modulate neuroinflammation in certain scenarios, whether they exert anti-neuroinflammatory effects in models of chronic pain is unknown. This study examined the effects of the prototypical I2R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) on hypersensitivity and neuroinflammation induced by chronic constriction injury (CCI), a neuropathic pain model in rats. In CCI rats, twice-daily treatment with 10 mg/kg 2-BFI for seven days consistently increased mechanical and thermal nociception thresholds, reduced GFAP and Iba-1 levels in the dorsal horn of the spinal cord, and reduced levels of TNF-α relative to saline treatment. These results were recapitulated in primary mouse cortical astrocyte cultures. Incubation with 2-BFI attenuated GFAP expression and supernatant TNF-α levels in LPS-stimulated cultures. These results suggest that I2R agonists such as 2-BFI may reduce neuroinflammation which may partially account for their antinociceptive effects.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA; School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Pablo M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
31
|
Role of intracellular Ca 2+ signaling in the antinociceptive and discriminative stimulus effects of the imidazoline I 2 receptor agonist 2-BFI in rats. Psychopharmacology (Berl) 2017; 234:3299-3307. [PMID: 28825118 PMCID: PMC5660937 DOI: 10.1007/s00213-017-4719-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/13/2017] [Indexed: 01/27/2023]
Abstract
RATIONALE Recent research has established the imidazoline I2 receptor as a promising target for the development of novel analgesics. However, despite an increasing understanding of imidazoline I2 receptor-mediated behavioral effects, little is known about post-I2-receptor signaling mechanisms. OBJECTIVE This study examined the effects of several inhibitors of Ca2+ signaling mechanisms on two behavioral effects of the prototypical imidazoline I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline (2-BFI). METHODS The von Frey filament test was used to examine the antinociceptive effects of 2-BFI in complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg/kg (intraperitoneally) 2-BFI from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. RESULTS The L-type Ca2+ channel blockers verapamil and nimodipine, the calmodulin antagonist W-7, and the internal Ca2+ release inhibitor ryanodine all attenuated the antinociceptive effects of 2-BFI. Oxycodone- and acetaminophen-induced antinociception was unaffected by pretreatment with the Ca2+ channel blockers. Rats learned to reliably discriminate 5.6 mg/kg 2-BFI from saline. The I2 receptor agonists BU224, RS45041, tracizoline, and CR4056 all fully substituted for 5.6 mg/kg 2-BFI while idazoxan, S22687, 2,5-dimethoxy-4-methylamphetamine (DOM), and phenyzoline produced partial or no substitution. Verapamil, nimodipine, and W-7 did not alter the discriminative stimulus effects of 2-BFI. CONCLUSION These results indicate that the antinociceptive effects of 2-BFI involve intracellular Ca2+ elevation and/or downstream Ca2+/calmodulin signaling, whereas the discriminative stimulus effects of 2-BFI are mediated by a distinct, independent mechanism.
Collapse
|
32
|
Tolerance and cross-tolerance to the antinociceptive effects of oxycodone and the imidazoline I 2 receptor agonist phenyzoline in adult male rats. Psychopharmacology (Berl) 2017; 234:1871-1880. [PMID: 28314949 PMCID: PMC5451304 DOI: 10.1007/s00213-017-4599-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE Emerging evidence suggests the potential utility of combining opioids with imidazoline I2 receptor agonists for chronic pain. However, chronic pain management requires prolonged pharmacotherapy, and the consequence of such combination therapy remains unclear. OBJECTIVE This study examined the anti-hyperalgesic effect of the opioid oxycodone, the selective I2 receptor agonist phenyzoline, alone and in combination, during prolonged treatment. METHODS Von Frey filament test was used to examine the anti-hyperalgesic effect of drugs in complete Freund's adjuvant (CFA)-induced inflammatory pain or chronic constriction injury (CCI)-induced neuropathic pain in rats. Twice-daily treatment with oxycodone and phenyzoline, alone or in combination, was continued until the development of significant tolerance (oxycodone) or as long as 19 days passed (phenyzoline). RESULTS In rats receiving CFA or CCI manipulation, mechanical hyperalgesia was dose-dependently reversed by oxycodone and phenyzoline. Twice-daily treatment with 2 × ED50 dose of oxycodone for 7 days led to significant antinociceptive tolerance to oxycodone but not cross-tolerance to phenyzoline. Similarly, twice-daily treatment with 2 × ED50 dose of phenyzoline for 19 days led to significant antinociceptive tolerance to phenyzoline but not cross-tolerance to oxycodone. Twice-daily treatment with the combined oxycodone and phenyzoline using different ratios (1:3, 1:1 and 3: 1) at the doses that were functionally equivalent to the treatment doses of oxycodone and phenyzoline for 13-19 days generally led to delayed antinociceptive tolerance. CONCLUSIONS Combination therapy with oxycodone and I2 receptor agonists maintains prolonged antinociceptive effectiveness with reduced propensity to develop tolerance.
Collapse
|
33
|
Abstract
Since first introduced more than two decades ago, the research in imidazoline I2 receptors has been steadily increasing. This review provides an update on the current status of I2 receptor pharmacology. Imidazoline I2 receptors or I2 binding sites refer to several (at least four) different proteins that bind to [3H]-idazoxan and [3H]-2-BFI with high affinity. The molecular identities of the proteins remain elusive. One of the proteins (45kD) seems to be consistent with the identity of brain creatine kinase. The biological functions of I2 receptors have been primarily unveiled by the studies of selective I2 receptor ligands. Accumulating evidence suggests that I2 receptor ligands are effective analgesics for persistent and chronic painful conditions such as inflammatory, neuropathic and postoperative pain. One selective I2 receptor ligand, CR4056, has been advanced to phase II clinical trial with the therapeutic indication of chronic inflammatory pain (osteoarthritis). The expansion to the treatment of other chronic pain conditions should be expected if CR4056 could eventually be approved as a new drug. I2 receptor ligands also demonstrate robust discriminative stimulus activity and induce a characteristic discriminative cue in animals. Biochemical and preclinical in vivo investigations also suggest that I2 receptor ligands have neuroprotective activity and modulate body temperature. The emerging discrepancies of a range of purported selective I2 receptor ligands suggest different pharmacological effects mediated by discrete I2 receptor components which likely attribute to the I2 receptor-related proteins. It is proposed that the I2 receptors represent an emerging drug target for the treatment of neurological disorders such as pain and stroke, and deserve more research attention to translate preclinical findings to pharmacotherapies.
Collapse
Affiliation(s)
- Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|