1
|
Ishitsuka Y, Kondo Y, Kadowaki D. Toxicological Property of Acetaminophen: The Dark Side of a Safe Antipyretic/Analgesic Drug? Biol Pharm Bull 2020; 43:195-206. [PMID: 32009106 DOI: 10.1248/bpb.b19-00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is the most popular analgesic/antipyretic agent in the world. APAP has been regarded as a safer drug compared with non-steroidal anti-inflammatory drugs (NSAIDs) particularly in terms of lower risks of renal dysfunction, gastrointestinal injury, and asthma/bronchospasm induction, even in high-risk patients such as the elderly, children, and pregnant women. On the other hand, the recent increasing use of APAP has raised concerns about its toxicity. In this article, we review recent pharmacological and toxicological findings about APAP from basic, clinical, and epidemiological studies, including spontaneous drug adverse events reporting system, especially focusing on drug-induced asthma and pre-and post-natal closure of ductus arteriosus. Hepatotoxicity is the greatest fault of APAP and the most frequent cause of drug-induced acute liver failure in Western countries. However, its precise mechanism remains unclear and no effective cure beyond N-acetylcysteine has been developed. Recent animal and cellular studies have demonstrated that some cellular events, such as c-jun N-terminal kinase (JNK) pathway activation, endoplasmic reticulum (ER) stress, and mitochondrial oxidative stress may play important roles in the development of hepatitis. Herein, the molecular mechanisms of APAP hepatotoxicity are summarized. We also discuss the not-so-familiar "dark side" of APAP as an otherwise safe analgesic/antipyretic drug.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Daisuke Kadowaki
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University
| |
Collapse
|
2
|
Paracetamol inhibits Ca 2+ permeant ion channels and Ca 2+ sensitization resulting in relaxation of precontracted airway smooth muscle. J Pharmacol Sci 2019; 142:60-68. [PMID: 31843508 DOI: 10.1016/j.jphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.
Collapse
|
3
|
Kennedy JL, Kurten RC, McCullough S, Panettieri RA, Koziol-White C, Jones SM, Caid K, Gill PS, Roberts D, Jaeschke H, McGill MR, James L. Acetaminophen is both bronchodilatory and bronchoprotective in human precision cut lung slice airways. Xenobiotica 2019; 49:1106-1115. [PMID: 30328361 DOI: 10.1080/00498254.2018.1536814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Epidemiologic studies have demonstrated an association between acetaminophen (APAP) use and the development of asthma symptoms. However, few studies have examined relationships between APAP-induced signaling pathways associated with the development of asthma symptoms. We tested the hypothesis that acute APAP exposure causes airway hyper-responsiveness (AHR) in human airways. Precision cut lung slice (PCLS) airways from humans and mice were used to determine the effects of APAP on airway bronchoconstriction and bronchodilation and to assess APAP metabolism in lungs. APAP did not promote AHR in normal or asthmatic human airways ex vivo. Rather, high concentrations mildly bronchodilated airways pre-constricted with carbachol (CCh), histamine (His), or immunoglobulin E (IgE) cross-linking. Further, the addition of APAP prior to bronchoconstrictors protected the airways from constriction. Similarly, in vivo treatment of mice with APAP (200 mg/kg IP) resulted in reduced bronchoconstrictor responses in PCLS airways ex vivo. Finally, in both mouse and human PCLS airways, exposure to APAP generated only low amounts of APAP-protein adducts, indicating minimal drug metabolic activity in the tissues. These findings indicate that acute exposure to APAP does not initiate AHR, that high-dose APAP is protective against bronchoconstriction, and that APAP is a mild bronchodilator.
Collapse
Affiliation(s)
- Joshua L Kennedy
- a Division of Allergy and Immunology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Arkansas Children's Hospital Research Institute , Little Rock , AR , USA
| | - Richard C Kurten
- a Division of Allergy and Immunology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Arkansas Children's Hospital Research Institute , Little Rock , AR , USA.,d Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sandra McCullough
- e Division of Clinical Pharmacology and Toxicology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Reynold A Panettieri
- f Department of Medicine , Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Cynthia Koziol-White
- f Department of Medicine , Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Stacie M Jones
- a Division of Allergy and Immunology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Arkansas Children's Hospital Research Institute , Little Rock , AR , USA.,d Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Katherine Caid
- g Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Pritmohinder S Gill
- c Arkansas Children's Hospital Research Institute , Little Rock , AR , USA.,g Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Dean Roberts
- e Division of Clinical Pharmacology and Toxicology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Hartmut Jaeschke
- h Department of Pharmacology, Toxicology, and Therapeutics , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mitchell R McGill
- i Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Laura James
- e Division of Clinical Pharmacology and Toxicology, Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|