1
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Stadulytė A, Alcaide-Corral CJ, Walton T, Lucatelli C, Tavares AAS. Analysis of PK11195 concentrations in rodent whole blood and tissue samples by rapid and reproducible chromatographic method to support target-occupancy PET studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:33-39. [PMID: 31005772 PMCID: PMC6522057 DOI: 10.1016/j.jchromb.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.
Collapse
Affiliation(s)
- Agnė Stadulytė
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK.
| | - Carlos José Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Adriana Alexandre S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| |
Collapse
|
3
|
Yang KC, Stepanov V, Martinsson S, Ettrup A, Takano A, Knudsen GM, Halldin C, Farde L, Finnema SJ. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain. Int J Neuropsychopharmacol 2017; 20:683-691. [PMID: 28911007 PMCID: PMC5581490 DOI: 10.1093/ijnp/pyx051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/18/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain. METHODS Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region. RESULTS Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex. CONCLUSIONS The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde).,Correspondence: Kai-Chun Yang, MD, Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Building R5:02, SE-171 76 Stockholm, Sweden ()
| | - Vladimir Stepanov
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Stefan Martinsson
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Anders Ettrup
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Akihiro Takano
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Gitte M Knudsen
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Christer Halldin
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Lars Farde
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Sjoerd J Finnema
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| |
Collapse
|