1
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
2
|
Alsadi N, Yasavoli-Sharahi H, Mueller R, Cuenin C, Chung F, Herceg Z, Matar C. Protective Mechanisms of Polyphenol-Enriched Blueberry Preparation in Preventing Inflammation in the Skin against UVB-Induced Damage in an Animal Model. Antioxidants (Basel) 2023; 13:25. [PMID: 38275645 PMCID: PMC10812677 DOI: 10.3390/antiox13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
UVB significantly impacts the occurrence of cutaneous disorders, ranging from inflammatory to neoplastic diseases. Polyphenols derived from plants have been found to exhibit photoprotective effects against various factors that contribute to skin cancer. During the fermentation of the polyphenol-enriched blueberry preparation (PEBP), small oligomers of polyphenols were released, thus enhancing their photoprotective effects. This study aimed to investigate the protective effects of PEBP on UVB-induced skin inflammation. Topical preparations of polyphenols were applied to the skin of dorsally shaved mice. Mice were subsequently exposed to UVB and were sacrificed 90 min after UVB exposure. This study revealed that pretreatment with PEBP significantly inhibited UVB-induced recruitment of mast and neutrophil cells and prevented the loss of skin thickness. Furthermore, the findings show that PEBP treatment resulted in the downregulation of miR-210, 146a, and 155 and the upregulation of miR-200c and miR-205 compared to the UVB-irradiated mice. Additionally, PEBP was found to reduce the expression of IL-6, IL-1β, and TNFα, inhibiting COX-2 and increasing IL-10 after UVB exposure. Moreover, DNA methylation analysis indicated that PEBP might potentially reduce the activation of inflammation-related pathways such as MAPK, Wnt, Notch, and PI3K-AKT signaling. Our finding suggests that topical application of PEBP treatment may effectively prevent UVB-induced skin damage by inhibiting inflammation.
Collapse
Affiliation(s)
- Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Rudolf Mueller
- Pathology and Laboratory Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Felicia Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Yang H, Zhou J, Li D, Zhou S, Dai X, Du X, Mao H, Wang B. The inhibitory role of microRNA-141-3p in human cutaneous melanoma growth and metastasis through the fibroblast growth factor 13-mediated mitogen-activated protein kinase axis. Melanoma Res 2023; 33:492-505. [PMID: 36988403 DOI: 10.1097/cmr.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human cutaneous melanoma (CM) is a highly invasive malignancy arising from melanocytes, and accompanied by ever-increasing incidence and mortality rates worldwide. Interestingly, microRNAs (miRNAs) possess the ability to regulate CM cell biological functions, resulting in the aggressive progression of CM. Nevertheless, a comprehensive understanding of the underlying mechanism remains elusive. Accordingly, the current study sought to elicit the functional role of miR-141-3p in human CM cells in association with fibroblast growth factor 13 (FGF13) and the MAPK pathway. First, miR-141-3p expression patterns were detected in human CM tissues and cell lines, in addition to the validation of the targeting relationship between miR-141-3p and FGF13. Subsequently, loss- and gain-of-function studies of miR-141-3p were performed to elucidate the functional role of miR-141-3p in the malignant features of CM cells. Intriguingly, our findings revealed that FGF13 was highly expressed, whereas miR-141-3p was poorly expressed in the CM tissues and cells. Further analysis highlighted FGF13 as a target gene of miR-141-3p. Meanwhile, overexpression of miR-141-3p inhibited the proliferative, invasive, and migratory abilities of CM cells, while enhancing their apoptosis accompanied by downregulation of FGF13 and the MAPK pathway-related genes. Collectively, our findings highlighted the inhibitory effects of miR-141-3p on CM cell malignant properties via disruption of the FGF13-dependent MAPK pathway, suggesting a potential target for treating human CM.
Collapse
Affiliation(s)
- Haojan Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dongdong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinchao Du
- Shanghai Jiao Tong University School of Medicine
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P. R. China
| |
Collapse
|
4
|
Fawzy MS, Ibrahiem AT, Bayomy NA, Makhdoom AK, Alanazi KS, Alanazi AM, Mukhlef AM, Toraih EA. MicroRNA-155 and Disease-Related Immunohistochemical Parameters in Cutaneous Melanoma. Diagnostics (Basel) 2023; 13:1205. [PMID: 36980512 PMCID: PMC10047208 DOI: 10.3390/diagnostics13061205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cutaneous melanoma is a severe and life-threatening form of skin cancer with growing incidences. While novel interventions have improved prognoses for these patients, early diagnosis of targeted treatment remains the most effective approach. MicroRNAs have grown to good use as potential biomarkers for early detection and as targets for treatment. miR-155 is well-studied for its role in tumor cell survival and proliferation in various tissues, although its role in melanoma remains controversial. In silico data analysis was performed in the dbDEMC v.3 to identify differentially expressed miRNA. We validated gene targets in melanoma using TarBase v8.0 and miRPath v3.0 and determined protein-protein interactions of the target genes. One hundred forty patients (age range 21-90 years) with cutaneous melanoma who underwent resection were included. Molecular assessment using Real-Time RT-qPCR, clinicopathological associations, and a literature review for the different roles of miR-155 in melanoma were performed. Analysis of the dbDEMC reveals controversial findings. While there is evidence of upregulation of miR-155 in primary and metastatic melanoma samples, others suggest decreased expression in later-stage melanoma and cases with brain metastasis. miR-155 has been overexpressed in prior cases of melanoma and precancerous lesions, and it was found to be dysregulated when compared to benign nevi. While miR-155 expression was associated with favorable outcomes in some studies, others showed an association with metastasis. Patients with high levels of miR-155 also noted reduction after receiving anti-PD-1 treatment, correlated with more prolonged overall survival. In our patient's cohort, 22.9% relapsed during treatment, and 45% developed recurrence, associated with factors such as lymph node infiltration, high mitotic index, and positive staining for CD117. Although overall analysis revealed miR-155 downregulation in melanoma specimens compared to non-cancer tissues, increased expression of miR-155 was associated with cases of superficial spreading melanoma subtype (p = 0.005) and any melanoma with a high mitotic rate (p = 0.010). The analysis did not identify optimum cutoff values to predict relapse, recurrence, or mortality. In conclusion, miR-155 could have, in part, a potential prognostic utility in cutaneous melanoma. Further mechanistic studies are required to unravel the multifunctional role of miR-155 in melanoma.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Naglaa A. Bayomy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Amin K. Makhdoom
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Khalid S. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Mukhlef
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Zhang W, Jiang B, Zhu H, Cheng A, Li C, Huang H, Li X, Kuang Y. miR-33b in human cancer: Mechanistic and clinical perspectives. Biomed Pharmacother 2023; 161:114432. [PMID: 36841026 DOI: 10.1016/j.biopha.2023.114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The microRNAs (miRNAs), an extensive class of small noncoding RNAs (∼22 nucleotides), have been shown to have critical functions in various biological processes during development. miR-33b (or hsa-miR-33b) is down-regulated in cancer of multiple systems. Notably, at least 27 protein-coding genes can be targeted by miR-33b. miR-33b regulates the cell cycle, cell proliferation, various metabolism pathways, epithelial-mesenchymal transition (EMT), cancer cell invasion and migration, etc. In prostate cancer, Cullin 4B (CUL4B) can be recruited to the promoter to inhibit the expression of miR-33b. In gastric cancer, the hypermethylation of the CpG island regulated the expression of miR-33b. Besides, miR-33b could be negatively regulated by 7 competing-endogenous RNAs (ceRNAs), which are all long non-coding RNAs (lncRNAs). There are at least 4 signaling pathways, including NF-κB, MAP8, Notch1, and Wnt/β-catenin signaling pathways, which could be regulated partially by miR-33b. Additionally, low expression of miR-33b was associated with clinicopathology and prognosis in cancer patients. In addition, the aberrant expression of miR-33b was connected with the resistance of cancer cells to 5 anticancer drugs (cisplatin, docetaxel, bortezomib, paclitaxel, and daunorubicin). Importantly, our work systematically summarizes the aberrant expression of miR-33b in various neoplastic diseases and the effect of its downregulation on the biological behavior of cancer cells. Furthermore, this review focuses on recent advances in understanding the molecular regulation mechanisms of miR-33b. Moreso, the relationship between the miR-33b expression levels and the clinicopathological data and prognosis of tumor patients was summarized for the first time. Overall, we suggest that the current studies of miR-33b are insufficient but provide potential hints and direction for future miR-33b-related research.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Can Li
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Yirui Kuang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
6
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
7
|
Alia Moosavian S, Hashemi M, Etemad L, Daneshmand S, Salmasi Z. Melanoma-derived exosomes: Versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma. Int Immunopharmacol 2022; 113:109320. [DOI: 10.1016/j.intimp.2022.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
8
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Li Y, Wei Y, Shao J. Diagnostic value of miR-101 levels in blood and urine of patients with hypertensive disorder complicating pregnancy. Clin Exp Hypertens 2022; 44:1-7. [PMID: 36047533 DOI: 10.1080/10641963.2022.2110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study explored the miR-101 clinical significance in hypertensive disorder complicating pregnancy (HDCP). METHODS Pregnant women with gestational hypertension (GH)/mild preeclampsia (mPE)/severe preeclampsia (sPE) were included. The miR-101 levels were measured. Correlation between miR-101 and soluble fmslike tyrosine kinase-1 (sFlt-1), miR-101 predictive value, and factors influencing HDCP grade were evaluated. RESULTS Serum miR-101 was down-regulated and negatively correlated with sFlt-1. miR-101 was an independent risk factor for HDCP and decreased with HDCP severity. The area under the curve of miR-101 in differentiating GH from mPE and mPE from sPE was 0.7764 and 0.8529. CONCLUSION Serum miR-101 level may be a biomarker for grading HDCP.
Collapse
Affiliation(s)
- Yushan Li
- Department of Obstetrics and Gynecology, Jincheng People's Hospital, Jincheng, China
| | - Yuanyuan Wei
- Department of Obstetrics and Gynecology, Jincheng People's Hospital, Jincheng, China
| | - Jiong Shao
- Department of Obstetrics and Gynecology, Jincheng People's Hospital, Jincheng, China
| |
Collapse
|
10
|
Zhang Y, Zhou M, Li K. MicroRNA-30 inhibits the growth of human ovarian cancer cells by suppressing RAB32 expression. Int J Immunopathol Pharmacol 2022; 36:20587384211058642. [PMID: 34986662 PMCID: PMC8744078 DOI: 10.1177/20587384211058642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction MicroRNAs (miRs) exhibit the potential to act as therapeutic targets for the management of human cancers including ovarian cancer. The role of microRNA-30 (miR-30) via modulation of RAB32 expression has not been studied in ovarian cancer. Consistently, the present study was designed to characterize the molecular role of miR-30/RAB32 axis in human ovarian cancer. Methods Cell viability was determined by MTT assay. Expression analysis was carried out by qRT-PCR. Dual luciferase assay was used to confirm the interaction between miR-30 and RAB32. Scratch-heal and transwell chamber assays were used to monitor the cell migration and invasion. Western blotting and immunofluorescence assays were used to determine the protein expression. Results The results revealed significant (p < 0.05) downregulation of miR-30 in human ovarian cancer cell lines. Overexpression of miR-30 in ovarian SK-OV-3 and A2780 cancer cells significantly (p < 0.05) inhibited their proliferation. Besides, ovarian cancer cells overexpressing miR-30 showed significantly (p < 0.05) lower migration and invasion. The miR-30 upregulation also altered the expression pattern of marker proteins of epithelial–mesenchymal transition in ovarian cancer cells. In silico analysis predicted RAB32 as the molecular target of miR-30 at post-transcriptional level. The silencing of RAB32 mimicked the tumor-suppressive effects of miR-30 overexpression in ovarian cancer cells. Nonetheless, overexpression of RAB32 could prevent the tumor-suppressive effects of miR-30 on SK-OV-3 and A2780 cancer cells. Conclusion Taken together, the results suggest the tumor-suppressive role of miR-30 and point towards the therapeutic utility of miR-30/RAB32 molecular axis in the management of ovarian cancer
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan , China
| | - Min Zhou
- Department of Gynaecology and Obstetrics, Jinan Seventh People's Hospital, Jinan, China
| | - Kun Li
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan , China
| |
Collapse
|
11
|
The role of Hypoxia-Inducible Factor-1alpha and its signaling in melanoma. Biomed Pharmacother 2021; 141:111873. [PMID: 34225012 DOI: 10.1016/j.biopha.2021.111873] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation to the loss of O2 is regulated via the activity of hypoxia-inducible factors such as Hypoxia-Inducible Factor-1 (HIF-1). HIF-1 acts as a main transcriptional mediator in the tissue hypoxia response that regulates over 1000 genes related to low oxygen tension. The role of HIF-1α in oncogenic processes includes angiogenesis, tumor metabolism, cell proliferation, and metastasis, which has been examined in various malignancies, such as melanoma. Melanoma is accompanied by a high death rate and a cancer type whose incidence has risen over the last decades. The linkage between O2 loss and melanogenesis had extensively studied over decades. Recent studies revealed that HIF-1α contributes to melanoma progression via different signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK, JAK/STAT, Wnt/β-catenin, Notch, and NF-κB. Also, various microRNAs (miRs) are known to mediate the HIF-1α role in melanoma. Therefore, HIF-1α offers a diagnostic/prognostic biomarker and a candidate for targeted therapy in melanoma.
Collapse
|
12
|
Li S, Stöckl S, Lukas C, Herrmann M, Brochhausen C, König MA, Johnstone B, Grässel S. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p. Stem Cell Res Ther 2021; 12:252. [PMID: 33926561 PMCID: PMC8082633 DOI: 10.1186/s13287-021-02317-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curcumin has anti-inflammatory effects and qualifies as a potential candidate for the treatment of osteoarthritis (OA). However, curcumin has limited bioavailability. Extracellular vesicles (EVs) are released by multiple cell types and act as molecule carrier during intercellular communication. We assume that EVs can maintain bioavailability and stability of curcumin after encapsulation. Here, we evaluated modulatory effects of curcumin-primed human (h)BMSC-derived EVs (Cur-EVs) on IL-1β stimulated human osteoarthritic chondrocytes (OA-CH). METHODS CellTiter-Blue Viability- (CTB), Caspase 3/7-, and live/dead assays were used to determine range of cytotoxic curcumin concentrations for hBMSC and OA-CH. Cur-EVs and control EVs were harvested from cell culture supernatants of hBMSC by ultracentrifugation. Western blotting (WB), transmission electron microscopy, and nanoparticle tracking analysis were performed to characterize the EVs. The intracellular incorporation of EVs derived from PHK26 labeled and curcumin-primed or control hBMSC was tested by adding the labeled EVs to OA-CH cultures. OA-CH were pre-stimulated with IL-1β, followed by Cur-EV and control EV treatment for 24 h and subsequent analysis of viability, apoptosis, and migration (scratch assay). Relative expression of selected anabolic and catabolic genes was assessed with qRT-PCR. Furthermore, WB was performed to evaluate phosphorylation of Erk1/2, PI3K/Akt, and p38MAPK in OA-CH. The effect of hsa-miR-126-3p expression on IL-1β-induced OA-CH was determined using CTB-, Caspase 3/7-, live/dead assays, and WB. RESULTS Cur-EVs promoted viability and reduced apoptosis of IL-1β-stimulated OA-CH and attenuated IL-1β-induced inhibition of migration. Furthermore, Cur-EVs increased gene expression of BCL2, ACAN, SOX9, and COL2A1 and decreased gene expression of IL1B, IL6, MMP13, and COL10A1 in IL-1β-stimulated OA-CH. In addition, phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK, induced by IL-1β, is prevented by Cur-EVs. Cur-EVs increased IL-1β-reduced expression of hsa-miR-126-3p and hsa-miR-126-3p mimic reversed the effects of IL-1β. CONCLUSION Cur-EVs alleviated IL-1β-induced catabolic effects on OA-CH by promoting viability and migration, reducing apoptosis and phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK thereby modulating pro-inflammatory signaling pathways. Treatment of OA-CH with Cur-EVs is followed by upregulation of expression of hsa-miR-126-3p which is involved in modulation of anabolic response of OA-CH. EVs may be considered as promising drug delivery vehicles of curcumin helping to alleviate OA.
Collapse
Affiliation(s)
- Shushan Li
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Christoph Lukas
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Marietta Herrmann
- IZKF Group Tissue Reg. in Musculoskeletal Dis., University Hospital & Bernhard-Heine-Centrum for Locomotion Res, University of Würzburg, Würzburg, Germany
| | | | - Matthias A König
- Department of Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany.
- Department of Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany.
| |
Collapse
|
13
|
Yin X, Huo Z, Yan S, Wang Z, Yang T, Wu H, Zhang Z. MiR-205 Inhibits Sporadic Vestibular Schwannoma Cell Proliferation by Targeting Cyclin-Dependent Kinase 14. World Neurosurg 2020; 147:e25-e31. [PMID: 33217595 DOI: 10.1016/j.wneu.2020.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sporadic vestibular schwannoma (VS) is a benign primary tumor that arises from the vestibular nerve. Growing VS can negatively compress the brain stem, which can lead to death. MicroRNAs (miRNAs) can negatively regulate target genes at the post-transcriptional level and are critical in tumorigenesis. Studies have demonstrated the tumor suppressive function of microRNA-205-5p (miR-205) across many cancers, but no studies have evaluated the role of miR-205 in sporadic VS. We conducted this study to examine the role of miR-205 in sporadic VS cell proliferation. METHODS We evaluated miR-205 expression in sporadic VS tissues and normal great auricular nerve by real-time quantitative polymerase chain reaction. Then, we transfected miR-205 mimics and control oligonucleotides into sporadic VS primary cells to examine the functional significance of miR-205 expression at a cellular level by CCK8 and colony formation and used dual-luciferase reporter assays to find the target gene of miR-205. RESULTS We determined that miR-205 levels were downregulated in sporadic VS tissues in comparison to normal controls. In functional assays, miR-205 suppressed proliferation and colony formation ability of sporadic VS cells. CDK14 (cyclin-dependent kinase 14) was identified as a target gene of miR-205 by bioinformatics, and validated using dual-luciferase reporter assays. Moreover, miR-205 overexpression inhibited levels of phosphorylated PI3K and Akt. CONCLUSIONS These findings suggested that miR-205 suppressed sporadic VS proliferation by targeting CDK14 and may be considered as a potential drug therapy for sporadic VS treatment in the future.
Collapse
Affiliation(s)
- Xiaoling Yin
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zirong Huo
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuang Yan
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhaohui Wang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
14
|
DiVincenzo MJ, Latchana N, Abrams Z, Moufawad M, Regan-Fendt K, Courtney NB, Howard JH, Gru AA, Zhang X, Fadda P, Carson WE. Tissue microRNA expression profiling in hepatic and pulmonary metastatic melanoma. Melanoma Res 2020; 30:455-464. [PMID: 32804708 PMCID: PMC7484309 DOI: 10.1097/cmr.0000000000000692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant melanoma has a propensity for the development of hepatic and pulmonary metastases. MicroRNAs (miRs) are small, noncoding RNA molecules containing about 22 nucleotides that mediate protein expression and can contribute to cancer progression. We aim to identify clinically useful differences in miR expression in metastatic melanoma tissue. RNA was extracted from formalin-fixed, paraffin-embedded samples of hepatic and pulmonary metastatic melanoma, benign, nevi, and primary cutaneous melanoma. Assessment of miR expression was performed on purified RNA using the NanoString nCounter miRNA assay. miRs with greater than twofold change in expression when compared to other tumor sites (P value ≤ 0.05, modified t-test) were identified as dysregulated. Common gene targets were then identified among dysregulated miRs unique to each metastatic site. Melanoma metastatic to the liver had differential expression of 26 miRs compared to benign nevi and 16 miRs compared to primary melanoma (P < 0.048). Melanoma metastatic to the lung had differential expression of 19 miRs compared to benign nevi and 10 miRs compared to primary melanoma (P < 0.024). Compared to lung metastases, liver metastases had greater than twofold upregulation of four miRs, and 4.2-fold downregulation of miR-200c-3p (P < 0.0081). These findings indicate that sites of metastatic melanoma have unique miR profiles that may contribute to their development and localization. Further investigation of the utility of these miRs as diagnostic and prognostic biomarkers and their impact on the development of metastatic melanoma is warranted.
Collapse
Affiliation(s)
| | | | - Zachary Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Maribelle Moufawad
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kelly Regan-Fendt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Nicholas B. Courtney
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | | | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Paolo Fadda
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - William E. Carson
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
Nabipoorashrafi SA, Shomali N, Sadat-Hatamnezhad L, Mahami-Oskouei M, Mahmoudi J, Sandoghchian Shotorbani B, Akbari M, Xu H, Sandoghchian Shotorbani S. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer of apoptosis in melanoma cancer cells in vitro. IUBMB Life 2020; 72:2034-2044. [PMID: 32687246 DOI: 10.1002/iub.2345] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Melanoma is a serious form of skin cancers begins in the melanocyte. Micro-RNAs are small noncoding RNA with 19 to 25 nucleotides in length involves in the regulation of a wide range of biological processes. MicroRNAs are affected by an aberrant epigenetic alteration in the tumors that may lead to their dysregulation and formation of cancer. Recently, dysregulation of numerous microRNAs has been reported in different types of cancer. The present study focused on the role of miR-143 in carcinogenesis of melanoma cancer. Here, we evaluated the expression level of miR-143 in three melanoma cell lines in comparison with the normal human epidermal melanocyte cell line. Then, miR-143 gene plasmid transfected into the WM115 cell line, for having the lowest expression of miR-143. In addition, the effect of miR-143 transfection on mRNA and protein levels of metastasis-related genes was performed along with MTT assay, wound healing assay, and flow cytometry. The results showed that mRNA and protein expression levels of metastasis-related genes including MMP-9, E-cadherin, Vimentin, and CXCR4 have been reduced following transfection of miR-143. Moreover, the results of the scratch test showed that miR-143 re-expression inhibited cell migration. Also, the role of miR-143 in the induction of apoptosis and inhibition of proliferation by flow cytometry and MTT was confirmed. As a result, the present study showed that miR-143 was involved in metastatic and apoptotic pathways, suggesting that miR-143 acts as a tumor-suppressor microRNA in melanoma cancer.
Collapse
Affiliation(s)
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| |
Collapse
|
16
|
Quiohilag K, Caie P, Oniscu A, Brenn T, Harrison D. The differential expression of micro-RNAs 21, 200c, 204, 205, and 211 in benign, dysplastic and malignant melanocytic lesions and critical evaluation of their role as diagnostic biomarkers. Virchows Arch 2020; 477:121-130. [PMID: 32388720 PMCID: PMC7320036 DOI: 10.1007/s00428-020-02817-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Overlapping histological features between benign and malignant lesions and a lack of firm diagnostic criteria for malignancy result in high rates of inter-observer variation in the diagnosis of melanocytic lesions. We aimed to investigate the differential expression of five miRNAs (21, 200c, 204, 205, and 211) in benign naevi (n = 42), dysplastic naevi (n = 41), melanoma in situ (n = 42), and melanoma (n = 42) and evaluate their potential as diagnostic biomarkers of melanocytic lesions. Real-time PCR showed differential miRNA expression profiles between benign naevi; dysplastic naevi and melanoma in situ; and invasive melanoma. We applied a random forest machine learning algorithm to classify cases based on their miRNA expression profiles, which resulted in a ROC curve analysis of 0.99 for malignant melanoma and greater than 0.9 for all other groups. This indicates an overall very high accuracy of our panel of miRNAs as a diagnostic biomarker of benign, dysplastic, and malignant melanocytic lesions. However, the impact of variable lesion percentage and spatial expression patterns of miRNAs on these real-time PCR results was also considered. In situ hybridisation confirmed the expression of miRNA 21 and 211 in melanocytes, while demonstrating expression of miRNA 205 only in keratinocytes, thus calling into question its value as a biomarker of melanocytic lesions. In conclusion, we have validated some miRNAs, including miRNA 21 and 211, as potential diagnostic biomarkers of benign, dysplastic, and malignant melanocytic lesions. However, we also highlight the crucial importance of considering tissue morphology and spatial expression patterns when using molecular techniques for the discovery and validation of new biomarkers.
Collapse
Affiliation(s)
- Katherine Quiohilag
- Department of Pathology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK.
| | - Peter Caie
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Anca Oniscu
- Department of Pathology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Thomas Brenn
- Departments of Pathology & Laboratory Medicine and Medicine and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - David Harrison
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
17
|
Chauhan SJ, Thyagarajan A, Sahu RP. Functional Significance of Mirna-149 in Lung Cancer: Can it be Utilized as a Potential Biomarker or a Therapeutic Target? AUSTIN JOURNAL OF MEDICAL ONCOLOGY 2020; 7:1048. [PMID: 38628497 PMCID: PMC11019914 DOI: 10.26420/austinjmedoncol.2020.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Accumulating evidence has documented the significance of miR-149 as a promising tumor-suppressive non-coding RNA that play critical roles in regulating genes involved in cancer growth and metastasis. Notably, the ability of miR-149 to be utilized as a potential biomarker in the diagnosis/prognosis or a therapeutic target has also been explored using various cellular and preclinical models, as well as in clinical settings of lung cancer. While the applicability of miR-149 in assessing tumor progression has been suggested, its potential in predicting treatment outcomes is needed to be verified in diverse settings of lung cancer patients. The current review presents an overview of the functional significance of miR-149 with ongoing challenges in non-small cell lung cancer.
Collapse
Affiliation(s)
- S J Chauhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - A Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - R P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| |
Collapse
|
18
|
Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi M, Yousefi B, Mansournia MA, Asemi Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14:563-571. [PMID: 32462914 DOI: 10.2217/bmm-2019-0567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed M Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Sharifi
- Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Mansournia
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Liu G, Li C, Zhen H, Zhang Z, Sha Y. Identification of prognostic gene biomarkers for metastatic skin cancer using data mining. Biomed Rep 2020; 13:22-30. [PMID: 32494360 DOI: 10.3892/br.2020.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skin cancer is a common malignant tumor in China and throughout the world, and the rate of recurrence is considerably high, thus endangering the quality of life and health of patients, and increasing the economic burden and pressure to the families of those afflicted. Due to the limitations of traditional drug treatments, it is difficult to achieve the desired therapeutic effect of complete removal. However, targeted gene therapy may be a novel means of treating skin cancer, as the targeted nature of treatment may improve therapeutic outcomes. However, targeted gene therapy requires physicians to select the appropriate gene, which means suitable genetic biomarkers must be identified from complex genetic data. In the present study, the least absolute shrinkage and selection operator regression analysis method was used with 10-fold cross verification to reduce the dimensions of gene data in patients with skin cancer, and subsequently, 20 gene biomarkers were screened. A prognostic model was constructed using these 20 gene biomarkers, and the validity of the model was assessed using a training set and a verification set, which showed that the model performed well. Finally, gene function analysis of these 20 gene biomarkers was determined. Relevant studies were found to show that the genetic biomarkers identified in this paper may possess value for the follow-up clinical treatment of skin cancer.
Collapse
Affiliation(s)
- Gang Liu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chen Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haiyan Zhen
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhigang Zhang
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yongzhong Sha
- School of Management, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
20
|
Sun MX, An Q, Chen LM, Guo L. MIR-520f Regulated Itch Expression and Promoted Cell Proliferation in Human Melanoma Cells. Dose Response 2020; 18:1559325820918450. [PMID: 32425721 PMCID: PMC7218305 DOI: 10.1177/1559325820918450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that abnormal expression and dysfunction of microRNA is involved in development of cancers. However, the function of miR-520f especially in human melanoma remains elusive. In the current study, the underlying function of miR-520f in human melanoma was investigated. Our study demonstrated that the miR-520f level in human melanoma cell lines and clinical tissues was increased. Overexpression of miR-520f promoted cell proliferation by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, anchorage-independent growth assay, and 5-bromo-2-deoxyuridine assays. Furthermore, we revealed that miR-520f could interact with circular RNA Itchy E3 ubiquitin protein ligase (ITCH) 3'-untranslated region and suppress ITCH expression in human melanoma cells. The inhibitory effect of miR-520f-in could be partially restored by knockdown of ITCH in human melanoma cells. In summary, this study provides novel insights into miR-520f act as a crucial role in the regulation of human melanoma cell growth via regulating ITCH, which might be a potential biomarker and therapeutic target of human melanoma.
Collapse
Affiliation(s)
- Ming-xia Sun
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qun An
- Department of Burns and Plastic Surgery, The Second People Hospital of Dezhou, People’s Republic of China
| | - La-mei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ling Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
21
|
Takashima Y, Kawaguchi A, Iwadate Y, Hondoh H, Fukai J, Kajiwara K, Hayano A, Yamanaka R. miR-101, miR-548b, miR-554, and miR-1202 are reliable prognosis predictors of the miRNAs associated with cancer immunity in primary central nervous system lymphoma. PLoS One 2020; 15:e0229577. [PMID: 32101576 PMCID: PMC7043771 DOI: 10.1371/journal.pone.0229577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) inhibit protein function by silencing the translation of target mRNAs. However, in primary central nervous system lymphoma (PCNSL), the expression and functions of miRNAs are inadequately known. Here, we examined the expression of 847 miRNAs in 40 PCNSL patients with a microarray and investigated for the miRNA predictors associated with cancer immunity-related genes such as T helper cell type 1/2 (Th-1/Th-2) and regulatory T cell (T-reg) status, and stimulatory and inhibitory checkpoint genes, for prognosis prediction in PCNSL. The aim of this study is to find promising prognosis markers based on the miRNA expression in PCNSL. We detected 334 miRNAs related to 66 cancer immunity-related genes in the microarray profiling. Variable importance measured by the random survival forest analysis and Cox proportional hazards regression model elucidated that 11 miRNAs successfully constitute the survival formulae dividing the Kaplan-Meier curve of the respective PCNSL subgroups. On the other hand, univariate analysis shortlisted 23 miRNAs for overall survival times, with four miRNAs clearly dividing the survival curves-miR-101/548b/554/1202. These miRNAs regulated Th-1/Th-2 status, T-reg cell status, and immune checkpoints. The miRNAs were also associated with gene ontology terms as Ras/MAP-kinase, ubiquitin ligase, PRC2 and acetylation, CDK, and phosphorylation, and several diseases including acquired immunodeficiency syndrome, glioma, and those related to blood and hippocampus with statistical significance. In conclusion, the results demonstrated that the four miRNAs comprising miR-101/548b/554/1202 associated with cancer immunity can be a useful prognostic marker in PCNSL and would help us understand target pathways for PCNSL treatments.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuo Iwadate
- Department of Neurosurgery, Graduate School of Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroaki Hondoh
- Departments of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Koji Kajiwara
- Department of Neurosurgery, Graduate School of Medical Sciences, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Shan TD, Tian ZB, Jiang YP. Downregulation of lncRNA MALAT1 suppresses abnormal proliferation of small intestinal epithelial stem cells through miR‑129‑5p expression in diabetic mice. Int J Mol Med 2020; 45:1250-1260. [PMID: 32124944 DOI: 10.3892/ijmm.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/08/2020] [Indexed: 11/05/2022] Open
Abstract
The problems caused by diabetes mellitus (DM) and its related complications are gaining increasing attention. In our previous study, the abnormal proliferation of small intestinal epithelial cells (IECs) were observed in diabetic mice. However, little is known regarding the potential underlying mechanism. In the present study, the abnormal proliferation of IECs in DM and the marked upregulation of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was observed. Additionally, knockdown of MALAT1 significantly reduced abnormal IESC proliferation in DM mice. Bioinformatics analysis and luciferase reporter assays revealed that microRNA (miR)‑129‑5p was directly targeted by MALAT1. Moreover, the results of the bioinformatics prediction and luciferase assays demonstrated that MALAT1 directly interacted with SRY‑box 9 (SOX9). Furthermore, MALAT1 silencing was observed to attenuate the abnormal proliferation of IESCs through the SOX9‑mediated WNT/β‑catenin signaling pathway. Knockdown of MALAT1 downregulated SOX9 expression by binding to miR‑129‑5p, thereby inhibiting the abnormal proliferation of IESCs via the WNT/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
23
|
MicroRNA-127 Inhibits the Progression of Melanoma by Downregulating Delta-Like Homologue 1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8523465. [PMID: 32051829 PMCID: PMC6995326 DOI: 10.1155/2020/8523465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Objective Melanoma is the most common form of skin cancer with low survival rate and poor prognosis. MicroRNAs (miRNAs) have been reported to play essential roles in progression of melanoma. However, the role and mechanism of miR-127 in the process of melanoma remain poorly understood. Methods The expressions of miR-127 and delta-like homologue 1 (DLK1) were measured in melanoma tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Cell proliferation and apoptosis were measured by MTT assay, flow cytometry, and Western blot. The interaction between miR-127 and DLK1 was investigated by bioinformatics analysis, luciferase activity assay, and RNA immunoprecipitation (RIP). Murine xenograft model was conducted to investigate the effect of miR-127 on tumor growth in vivo. Results miR-127 was inhibited and DLK1 mRNA was enhanced in melanoma tissues and cells. Low abundance of miR-127 in melanoma tissues predicted a poor prognosis and was associated with the malignant clinicopathological features. Overexpression of miR-127 inhibited cell proliferation and induced apoptosis in melanoma cells. Moreover, DLK1 was targeted by miR-127 and its restoration reversed the regulatory effect of miR-127 on the process of melanoma. Besides, the addition of miR-127 suppressed xenograft tumor growth via suppressing DLK1 protein level in nude mice. Conclusion miR-127 blocked the development of melanoma by targeting DLK1, providing a novel biomarker for the treatment of melanoma.
Collapse
|
24
|
Thyagarajan A, Tsai KY, Sahu RP. MicroRNA heterogeneity in melanoma progression. Semin Cancer Biol 2019; 59:208-220. [PMID: 31163254 PMCID: PMC6885122 DOI: 10.1016/j.semcancer.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
The altered expression of miRNAs has been linked with neocarcinogenesis or the development of human malignancies including melanoma. Of significance, multiple clinical studies have documented that distinct sets of microRNAs (miRNAs) could be utilized as prognostic biomarkers for cancer development or predict the outcomes of treatment responses. To that end, an in-depth validation of such differentially expressed miRNAs is necessary in diverse settings of cancer patients in order to devise novel approaches to control tumor growth and/or enhance the efficacy of clinically-relevant therapeutic options. Moreover, considering the heterogeneity and sophisticated regulation of miRNAs, the precise delineation of their cellular targets could also be explored to design personalized medicine. Given the significance of miRNAs in regulating several key cellular processes of tumor cells including cell cycle progression and apoptosis, we review the findings of such miRNAs implicated in melanoma tumorigenesis. Understanding the novel mechanistic insights of such miRNAs will be useful for developing diagnostic or prognostic biomarkers or devising future therapeutic intervention for malignant melanoma.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology & Tumor Biology at H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.
| |
Collapse
|
25
|
Boscaino V, Fiannaca A, La Paglia L, La Rosa M, Rizzo R, Urso A. MiRNA therapeutics based on logic circuits of biological pathways. BMC Bioinformatics 2019; 20:344. [PMID: 31757209 PMCID: PMC6873406 DOI: 10.1186/s12859-019-2881-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In silico experiments, with the aid of computer simulation, speed up the process of in vitro or in vivo experiments. Cancer therapy design is often based on signalling pathway. MicroRNAs (miRNA) are small non-coding RNA molecules. In several kinds of diseases, including cancer, hepatitis and cardiovascular diseases, they are often deregulated, acting as oncogenes or tumor suppressors. miRNA therapeutics is based on two main kinds of molecules injection: miRNA mimics, which consists of injection of molecules that mimic the targeted miRNA, and antagomiR, which consists of injection of molecules inhibiting the targeted miRNA. Nowadays, the research is focused on miRNA therapeutics. This paper addresses cancer related signalling pathways to investigate miRNA therapeutics. RESULTS In order to prove our approach, we present two different case studies: non-small cell lung cancer and melanoma. KEGG signalling pathways are modelled by a digital circuit. A logic value of 1 is linked to the expression of the corresponding gene. A logic value of 0 is linked to the absence (not expressed) gene. All possible relationships provided by a signalling pathway are modelled by logic gates. Mutations, derived according to the literature, are introduced and modelled as well. The modelling approach and analysis are widely discussed within the paper. MiRNA therapeutics is investigated by the digital circuit analysis. The most effective miRNA and combination of miRNAs, in terms of reduction of pathogenic conditions, are obtained. A discussion of obtained results in comparison with literature data is provided. Results are confirmed by existing data. CONCLUSIONS The proposed study is based on drug discovery and miRNA therapeutics and uses a digital circuit simulation of a cancer pathway. Using this simulation, the most effective combination of drugs and miRNAs for mutated cancer therapy design are obtained and these results were validated by the literature. The proposed modelling and analysis approach can be applied to each human disease, starting from the corresponding signalling pathway.
Collapse
Affiliation(s)
- Valeria Boscaino
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| | - Antonino Fiannaca
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| | - Laura La Paglia
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| | - Massimo La Rosa
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| | - Riccardo Rizzo
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| | - Alfonso Urso
- CNR-ICAR, National Research Council of Italy, via Ugo La Malfa 153, Palermo, 90146 Italy
| |
Collapse
|
26
|
Li B, Shen M, Yao H, Chen X, Xiao Z. Long Noncoding RNA TP73-AS1 Modulates Medulloblastoma Progression In Vitro And In Vivo By Sponging miR-494-3p And Targeting EIF5A2. Onco Targets Ther 2019; 12:9873-9885. [PMID: 31819485 PMCID: PMC6874156 DOI: 10.2147/ott.s228305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have shown that P73 antisense RNA 1T (non-protein coding), also known as TP73-AS1, is a long non-coding RNA (lncRNA) and involved in the development of medulloblastoma. However, the regulatory mechanism of lncRNA TP73-AS1 in medulloblastoma was still unclear, the present study was aimed to investigate the detailed functions and the mechanism of TP73-AS1 in regulation of medulloblastoma. Materials and methods The levels of TP73-AS1, miR-494-3p, and Eukaryotic initiation factor 5A2 (EIF5A2) were determined using quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH), or Immunohistochemistry (IHC). The function of TP73-AS1 in proliferation, apoptosis, migration, and invasion of medulloblastoma cells was evaluated using cell counting Kit-8 (CCK-8), flow cytometry, and transwell assay, respectively. The protein levels were determined by Western blot. Bioinformatics analysis and dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay were used to search and confirm the target gene of TP73-AS1 and miR-494-3p. The effect of TP73-AS1 knockdown in vivo was detected by animal experiment. Results The levels of TP73-AS1 and EIF5A2 were up-regulated, while miR-494-3p expression was down-regulated in medulloblastoma tissues and cells, ELF5A2 was a direct target of miR-494-3p, and miR-494-3p bound to TP73-AS1. The knockdown of TP73-AS1 inhibited cell proliferation, invasion, migration, and promoted apoptosis of medulloblastoma cells, while the miR-494-3p inhibitor abolished the effects of TP73-AS1 knockdown on medulloblastoma cells. Conclusion TP73-AS1 positively regulated EIF5A2 expression by sponging miR-494-3p. These findings suggested that TP73-AS1 served as an oncogene and promoted the progression of medulloblastoma.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Mingfeng Shen
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Hongwei Yao
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Xuan Chen
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Zhiqiang Xiao
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| |
Collapse
|
27
|
Li Q, Zhang LY, Wu S, Huang C, Liu J, Wang P, Cao Y. Bioinformatics Analysis Identifies MicroRNAs and Target Genes Associated with Prognosis in Patients with Melanoma. Med Sci Monit 2019; 25:7784-7794. [PMID: 31621692 PMCID: PMC6820336 DOI: 10.12659/msm.917082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Melanoma of the skin can be associated with early metastases and poor prognosis. This study aimed to identify microRNAs (miRNAs) and target genes associated with prognosis in melanoma using bioinformatics analysis. Material/Methods The Gene Expression Omnibus (GEO) database identified the microarray dataset GSE20994. Differentially expressed miRNAs (DE-miRNAs) were first identified using R language software and validated by GEO2R. Potential target genes of DE-miRNAs were screened, and their targets and prognostic role were evaluated in the miRTarBase database. Pathway enrichment and functional annotation analysis for target genes were established using the DAVID database. miRNA-hub gene networks and protein-protein interaction (PPI) networks were constructed and visualized using the STRING database and Cytoscape. Kaplan-Meier survival curves were constructed using transcriptome and survival data from the UALCAN web tool. Results There were 132 upregulated and 134 down-regulated DE-miRNAs identified from human melanoma samples. From the top three upregulated miRNAs, there were 580 potential predicted target genes, and from the top three down-regulated miRNAs, there 543 potential predicted target genes. miR-300 was upregulated, and miR-629 was down-regulated in melanoma. Two pivotal bub genes, TP53 and GAPDH, were identified in the PPI network. Five out of ten hub genes were modulated by upregulated miR-580, and five by miR-629. Increased mRNA expression of DAPK2 was associated with increased OS, and increased mRNA expression of SKCM, TECPR2, and ZNF781 were associated with reduced OS. Conclusions Bioinformatics analysis identified miRNAs and target genes associated with melanoma that may represent potential prognostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Qiao Li
- Clinical Laboratory, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Institute of Pediatric Diseases, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Li-Yu Zhang
- Institute of Pediatric Diseases, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shuang Wu
- Clinical Laboratory, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Chen Huang
- Department of Dermatology, Peking University First Hospital, Beijing, China (mainland)
| | - Juan Liu
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ping Wang
- Department of Dermatology, Chongqing Medical University First Affiliated Hospital, Chongqing, China (mainland)
| | - Yuan Cao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
28
|
Tang KL, Tang HY, Du Y, Tian T, Xiong SJ. MiR-638 suppresses the progression of oral squamous cell carcinoma through wnt/β-catenin pathway by targeting phospholipase D1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3278-3285. [PMID: 31379206 DOI: 10.1080/21691401.2019.1647222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kai-Liang Tang
- Department of VIP Center and Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Han-Ying Tang
- Department of Oral prosthology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Yi- Du
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Tian Tian
- Department of Stomatology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Shi-Jiang Xiong
- Department of VIP Center and Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Qin RF, Zhang J, Huo HR, Yuan ZJ, Xue JD. MiR-205 mediated APC regulation contributes to pancreatic cancer cell proliferation. World J Gastroenterol 2019; 25:3775-3786. [PMID: 31391772 PMCID: PMC6676546 DOI: 10.3748/wjg.v25.i28.3775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a deadly malignancy with aggressive properties. MicroRNAs (miRNAs) participate in the pathogenesis of a variety of diseases and molecular processes by targeting functional mRNAs. Nevertheless, the regulatory role of miRNAs in signaling pathways involved in pancreatic cancer remains largely unknown.
AIM To explore the molecular regulation involved in pancreatic cancer and potential mechanisms of miR-205.
METHODS Microarray analysis was performed to investigate the expression profile of miRNAs in pancreatic cancer. Expression of miR-205 was validated by qRT-PCR. Target prediction and functional enrichment analysis were employed to seek potential target genes of miR-205 and potential functions of these genes. The target binding of miR-205 and adenomatous polyposis coli (APC) was validated by luciferase reporter assay. APC protein expression in pancreatic cancer was validated by qRT-PCR and Western blot. Proliferation was evaluated by MTT and colony formation assays.
RESULTS A large number of miRNAs with altered expression were identified in pancreatic cancer. MiR-205 was significantly up-regulated. APC was found to be a validated target of miR-205 and down-regulated in pancreatic cancer. Proliferation experiments showed that miR-205 could promote cell proliferation in pancreatic cancer by targeting APC.
CONCLUSION The above findings suggested that miR-205 mediated APC regulation contributes to pancreatic cancer development, which could be considered as a novel prognostic biomarker for clinical care.
Collapse
Affiliation(s)
- Rui-Feng Qin
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia Zhang
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Hao-Ran Huo
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Zeng-Jiang Yuan
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia-Dong Xue
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| |
Collapse
|
30
|
Donnelly D, Aung PP, Jour G. The "-OMICS" facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol 2019; 59:165-174. [PMID: 31295564 DOI: 10.1016/j.semcancer.2019.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023]
Abstract
In the recent decade, cutting edge molecular and proteomic analysis platforms revolutionized biomarkers discovery in cancers. Melanoma is the prototype with over 51,100 biomarkers discovered and investigated thus far. These biomarkers include tissue based tumor cell and tumor microenvironment biomarkers and circulating biomarkers including tumor DNA (cf-DNA), mir-RNA, proteins and metabolites. These biomarkers provide invaluable information for diagnosis, prognosis and play an important role in prediction of treatment response. In this review, we summarize the most recent discoveries in each of these biomarker categories. We will discuss the challenges in their implementation and standardization and conclude with some perspectives in melanoma biomarker research.
Collapse
Affiliation(s)
- Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States
| | - Phyu P Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
31
|
Zhao X, Wang Q, Lin F, Wang X, Wang Y, Wang J, Wang C. RNA Sequencing of Osteosarcoma Gene Expression Profile Revealed that miR-214-3p Facilitates Osteosarcoma Cell Proliferation via Targeting Ubiquinol-Cytochrome c Reductase Core Protein 1 (UQCRC1). Med Sci Monit 2019; 25:4982-4991. [PMID: 31276465 PMCID: PMC6626500 DOI: 10.12659/msm.917375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Osteosarcoma (OS) is a common primary malignant bone tumor for which the molecular mechanisms remain unclear. Studies on coding and non-coding RNAs are needed to determine the molecular mechanism. Material/Methods To explore the potential roles of miRNAs and mRNA in OS, we determined the miRNA and mRNA expression profile of 3 pairs of OS and paracancerous tissues from patients with OS by sequencing and bioinformatics analysis. The expression levels of critical miRNAs and mRNAs were verified in 10 pairs of OS and paracancerous tissues. An miRNA inhibitor and mimics were used to investigate the interactions between miRNAs and target genes. The cell counting kit-8 assay was performed to evaluate OS cell proliferation after miRNA interference. Results A total of 184 miRNAs and 2501 mRNAs were identified (fold-change >2.0 or <2.0, P<0.05), with up-regulation of 82 miRNAs and 1320 mRNAs and down-regulation of 102 miRNAs and 1181 mRNAs in OS tissue. The protein protein interaction network revealed that UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) is a critical gene and a potential target gene of miR-214-3p. Both UQCRC1 and miR-214-3p were significantly differentially expressed in OS tissue and cell lines (down and up-regulated, respectively). Down-regulated miR-214-3p expression increased UQCRC1 expression and suppressed OS cell proliferation. In contrast, overexpression of miR-214-3p decreased UQCRC1 expression and promoted OS cell proliferation. Conclusions High miR-214-3p expression may promote OS cell proliferation by targeting UQCRC1, providing insight into a potential therapeutic target for preventing and treating OS.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Feifei Lin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xiaonan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Chenyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
32
|
Abstract
Abnormal expression of let-7b has been observed in many tumors, including glioma. However, the clinical significance of let-7b in glioma remained unclear. The aim of the study was to explore the correlation of let-7b expression with clinicopathological factors and prognosis in human glioma.Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to detect the relative expression of let-7b in glioma tissues. The association of let-7b expression with clinicopatholoigcal features of glioma patients was estimated using chi-square test. Overall survival curves were plotted using Kaplan-Meier method with log rank test. The prognosis analysis was performed using Cox regression model, and the results were shown as hazard ration (HR) with 95% confidence interval (CI).The relative expression of let-7b was significantly lower in glioma tissues than that in normal brain tissues (P < .001). Furthermore, let-7b level was closely correlated with World Health Organization (WHO) grade (P = .027) and Karnofsky performance score (KPS) (P = .018). Survival analysis indicated that glioma patients with low let-7b expression had significantly shorter overall survival time than those with high expression (log rank test, P < .001). Let-7b might be an independent prognostic biomarker for glioma (P < .001, HR = 2.415; 95% CI: 1.531-3.808).Let-7b may be a promising prognostic factor in glioma.
Collapse
|
33
|
Takashima Y, Kawaguchi A, Iwadate Y, Hondoh H, Fukai J, Kajiwara K, Hayano A, Yamanaka R. MicroRNA signature constituted of miR-30d, miR-93, and miR-181b is a promising prognostic marker in primary central nervous system lymphoma. PLoS One 2019; 14:e0210400. [PMID: 30615673 PMCID: PMC6322780 DOI: 10.1371/journal.pone.0210400] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that inhibit gene function by suppressing translation of target genes. However, in primary central nervous system lymphoma (PCNSL), the biological significance of miRNAs is largely unknown, although some miRNAs are known to be prognosis markers. Here, we analyzed 847 miRNAs expressed in 27 PCNSL specimens using microarray profiling and surveyed miRNA signature for prognostic prediction. Of these, 16 miRNAs were expressed in 27 PCNSL specimens at a frequency of 48%. Their variable importance measured by Random forest model revealed miR-192, miR-486, miR-28, miR-52, miR-181b, miR-194, miR-197, miR-93, miR-708, and let-7g as having positive effects; miR-29b-2*, miR-126, and miR-182 as having negative effects; and miR-18a*, miR-425, and miR-30d as neutral. After principal component analysis, the prediction formula for prognosis, consisting of the expression values of the above-mentioned miRNAs, clearly divided Kaplan-Meier survival curves by the calculated Z-score (HR = 6.4566, P = 0.0067). The 16 miRNAs were enriched by gene ontology terms including angiogenesis, cell migration and proliferation, and apoptosis, in addition to signaling pathways including TGF-β/SMAD, Notch, TNF, and MAPKinase. Their target genes included BCL2-related genes, HMGA2 oncogene, and LIN28B cancer stem cell marker. Furthermore, three miRNAs including miR-181b, miR-30d, and miR-93, selected from the 16 miRNAs, also showed comparable results for survival (HR = 8.9342, P = 0.0007), suggestive of a miRNA signature for prognostic prediction in PCNSL. These results indicate that this miRNA signature is useful for prognostic prediction in PCNSL and would help us understand target pathways for therapies in PCNSL.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuo Iwadate
- Department of Neurosurgery, Graduate School of Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroaki Hondoh
- Departments of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Koji Kajiwara
- Department of Neurosurgery, Graduate School of Medical Sciences, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
34
|
Wu P, Kong L, Li J. MicroRNA-494-3p protects rat cardiomyocytes against septic shock via PTEN. Exp Ther Med 2018; 17:1706-1716. [PMID: 30783439 PMCID: PMC6364176 DOI: 10.3892/etm.2018.7116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)-494-3p in myocardial injury in patients with septic shock and the underlying mechanism. A total of 22 patients with sepsis and 17 patients with septic shock were included in the present study. In addition, 20 healthy subjects were recruited as the control group. Peripheral blood was collected from all subjects and a rat cardiomyocyte model of myocardial injury was constructed. Reverse transcription-quantitative polymerase chain reaction was used to measure miR-494-3p expression, while cell counting kit-8 assays were performed to assess cell proliferation. Flow cytometry was performed to investigate cell cycle distribution and apoptosis. Lactate dehydrogenase (LDH) assays were performed to measure LDH levels. ELISA was also performed to measure LDH, tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels in cell culture supernatants. Western blotting was employed to detect phosphatase and tensin homolog (PTEN) protein expression and dual luciferase reporter assays were performed to identify the interaction between miR-494-3p and PTEN mRNA. Reduced miR-494-3p expression was correlated with myocardial damage in patients with septic shock. Sera from patients with septic shock downregulated miR-494-3p expression in rat cardiomyocytes. miR-494-3p overexpression inhibited rat cardiomyocyte injury induced by treatment with sera from patients with septic shock. Furthermore, miR-494-3p overexpression reduced the synthesis and release of TNF-α and IL-6 from rat cardiomyocytes. PTEN knockdown alleviated rat cardiomyocyte injury following treatment with serum from patients with septic shock. PTEN was demonstrated to induce the release of TNF-α and IL-6 from rat cardiomyocytes treated with septic shock serum, while miR-494-3p was demonstrated to bind to the 3′-untranslated seed region of PTEN mRNA to regulate its expression. The results of the present study suggest that miR-494-3p is downregulated in the peripheral blood of patients with septic shock and is negatively correlated with myocardial injury. The present study also indicates that miR-494-3p regulates PTEN expression, inhibits sepsis-induced myocardial injury and protects the function of cardiomyocytes. The protective effect and mechanism of action of miR-494-3p indicate that it has potential for use in the clinical diagnosis and therapy of myocardial damage.
Collapse
Affiliation(s)
- Peng Wu
- Intensive Medicine Department, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Lingchen Kong
- Intensive Medicine Department, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jianzhong Li
- Intensive Medicine Department, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
35
|
Lu W, Tao X, Fan Y, Tang Y, Xu X, Fan S, Huang Y, Yu Y, Luo D. LINC00888 promoted tumorigenicity of melanoma via miR-126/CRK signaling axis. Onco Targets Ther 2018; 11:4431-4442. [PMID: 30104884 PMCID: PMC6074824 DOI: 10.2147/ott.s164711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives Melanoma is an aggressive skin cancer. Understanding the underlying mechanisms for melanomagenesis and identification of novel and effective melanoma treatment strategies are urgently necessary. The long-noncoding RNAs are considered as new essential players during cancer development, including the melanoma. Materials and methods In this study, we first determined the expression of LINC00888 in tumor tissues and adjacent normal tissues from 28 patients with melanoma using quantitative polymerase chain reaction, and the correlation between the expression level of LINC00888 and the survival months was also examined. Next, we investigated the effect of LINC00888 on the proliferation, apoptosis, and invasion in the melanoma cells. Moreover, LINC00888-specific miRNA and target gene were further confirmed using the dual-luciferase reporter assay and Western blotting. Last, the tumorigenesis role of LINC00888 was also explored using tumor xenografts mouse model. Results Elevated LINC00888 expression was found in melanoma specimens compared with adjacent normal tissues. The 4-year overall survival in melanoma patients with high expression of LINC00888 was substantially shorter than that in those with low expression of LINC00888. Knockdown of LINC00888 significantly inhibited the proliferation, apoptosis, epithelial–mesenchymal transition, and invasion of melanoma cells, while the overexpression of LINC00888 exerted opposite effect. Furthermore, we revealed that microRNA-126 (miR-126) was able to regulate LINC00888 expression and further influence the expression of CRK. Consistently, miR-126 inhibitor could rescue the expression of CRK in LINC00888-downregulated cells, while miR-126 mimics could reduce the CRK expression level in cells with the overexpression of LINC00888. Last, the animal experiment further demonstrated that the overexpression of LINC00888 enhanced the tumor development in vivo. Conclusion Our data showed that long-noncoding RNA LINC00888 functioned as an oncogene in melanoma tumorigenesis, it also regulated the cellular proliferation and invasion of melanoma via miR126/CRK signaling pathway and metastasis via miR-126/CRK signaling axis, which could be a promising molecular target for treating melanoma.
Collapse
Affiliation(s)
- Wei Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China, .,Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Yi Tang
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Xin Xu
- Department of Sport Medicine, Zhejiang College of Sports, Hangzhou 310000, China
| | - Shasha Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,Department of Dermatology, People's Hospital of Hangzhou Medical College, Hangzhou 310006, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China,
| |
Collapse
|
36
|
Fornabaio G, Barnhill RL, Lugassy C, Bentolila LA, Cassoux N, Roman-Roman S, Alsafadi S, Del Bene F. Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep 2018; 8:10448. [PMID: 29992995 PMCID: PMC6041265 DOI: 10.1038/s41598-018-28515-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive cancer with a propensity for distant metastasis to various organs. In contrast, melanoma arising in pigmented uveal layers of the eye metastasizes mostly in the liver. The mechanisms of these metastases, which are ultimately resistant to therapy, are still unclear. Metastasis via intravascular dissemination of tumour cells is widely accepted as a central paradigm. However, we have previously described an alternative mode of tumour dissemination, extravascular migratory metastasis, based on clinical and experimental data. This mechanism is characterised by the interaction of cancer cells with the abluminal vascular surface, which defines angiotropism. Here, we employed our 3D co-culture approach to monitor cutaneous and uveal human melanoma cells dynamics in presence of vascular tubules. Using time-lapse microscopy, we evaluated angiotropism, the migration of tumour cells along vascular tubules and the morphological changes occurring during these processes. Cutaneous and uveal melanoma cells were injected in zebrafish embryos in order to develop xenografts. Employing in vivo imaging coupled with 3D reconstruction, we monitored the interactions between cancer cells and the external surface of zebrafish vessels. Overall, our results indicate that cutaneous and uveal melanoma cells spread similarly along the abluminal vascular surfaces, in vitro and in vivo.
Collapse
Affiliation(s)
- Giulia Fornabaio
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR315, F-75005, Paris, France
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
- Sorbonne Universités, UPMC University Paris 6, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Raymond L Barnhill
- Institut Curie, PSL Research University, Department of Pathology, F-75005, Paris, France
- Faculty of Medicine, University of Paris René Descartes, F-75006, Paris, France
| | - Claire Lugassy
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
| | - Laurent A Bentolila
- California NanoSystems Institute, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nathalie Cassoux
- Faculty of Medicine, University of Paris René Descartes, F-75006, Paris, France
- Institut Curie, PSL Research University, Department of Ophthalmology, F-75005, Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR315, F-75005, Paris, France.
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France.
| |
Collapse
|
37
|
Ho PY, Duan Z, Batra N, Jilek JL, Tu MJ, Qiu JX, Hu Z, Wun T, Lara PN, DeVere White RW, Chen HW, Yu AM. Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy. J Pharmacol Exp Ther 2018; 365:494-506. [PMID: 29602831 PMCID: PMC5931433 DOI: 10.1124/jpet.118.247775] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics.
Collapse
Affiliation(s)
- Pui Yan Ho
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Joseph L Jilek
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Jing-Xin Qiu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Zihua Hu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Theodore Wun
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Primo N Lara
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Ralph W DeVere White
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| |
Collapse
|
38
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|