1
|
Uehara S, Hirai K, Shirai T, Akamatsu T, Itoh K. PI3K pathway activation in severe asthma is linked to steroid insensitivity and adverse outcomes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100439. [PMID: 40125453 PMCID: PMC11928809 DOI: 10.1016/j.jacig.2025.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 03/25/2025]
Abstract
Background Patients with severe asthma may demonstrate reduced sensitivity to steroid treatment. However, the implications of this reduced responsiveness for clinical outcomes and the underlying mechanisms remain unclear. Objective The aim of this study was to investigate whether steroid sensitivity in patients with asthma is related to severity and clinical outcomes and to elucidate the role of inflammatory pathways in reducing steroid sensitivity. Methods This observational study of 169 asthma patients, with 161 followed for 1 year, involved isolation of peripheral blood mononuclear cells. These cells were treated with dexamethasone, and the mRNA expression of FKBP5, which is a marker of steroid sensitivity, was measured. To explore the mechanism underlying the reduced steroid sensitivity, cells were exposed to PI3K and MAPK inhibitors in combination with dexamethasone. Results A total of 53 patients diagnosed with severe asthma exhibited markedly diminished sensitivity to steroids compared with those with nonsevere asthma. Reduced steroid sensitivity has emerged as a critical risk factor for failure to experience clinical remission and exacerbation. This relationship between reduced steroid sensitivity and disease severity and adverse outcomes was confirmed at the 1-year follow-up. Mechanistic investigations revealed that the degree of recovery from steroid sensitivity after PI3Kδ/γ inhibitor treatment was significantly greater in patients with severe asthma than in those with nonsevere asthma, a finding confirmed at the 1-year follow-up. Conclusions Patients with severe asthma demonstrate reduced steroid sensitivity, which results in unfavorable clinical outcomes. Conversely, inhibition of the PI3K pathway significantly improves steroid sensitivity.
Collapse
Affiliation(s)
- Sekiko Uehara
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keita Hirai
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Taisuke Akamatsu
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Laboratory of Clinical Pharmacogenomics, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
2
|
Chen SS, Barrientos JC, Ferrer G, King-Richards M, Chen YJ, Ravichandran P, Ibrahim M, Kieso Y, Waters S, Kutok JL, Peluso M, Sharma S, Weaver DT, Pachter JA, Rai KR, Chiorazzi N. Duvelisib Eliminates CLL B Cells, Impairs CLL-Supporting Cells, and Overcomes Ibrutinib Resistance in a Xenograft Model. Clin Cancer Res 2023; 29:1984-1995. [PMID: 37071496 PMCID: PMC10192081 DOI: 10.1158/1078-0432.ccr-22-2386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Inhibitors of Bruton's tyrosine kinase (BTKi) and PI3K (PI3Ki) have significantly improved therapy of chronic lymphocytic leukemia (CLL). However, the emergence of resistance to BTKi has introduced an unmet therapeutic need. Hence, we sought evidence for essential roles of PI3K-δi and PI3K-γi in treatment-naïve and BTKi-refractory CLL. EXPERIMENTAL DESIGN Responses to PI3K-δi, PI3K-γi, and the dual-inhibitor duvelisib in each B, T, and myeloid cell compartments of CLL were studied in vitro, and in a xenograft mouse model using primary cells from treatment-naïve and ibrutinib-resistant patients, and finally, in a patient with ibrutinib-resistant CLL treated with duvelisib. RESULTS We demonstrate the essential roles of PI3K-δ for CLL B-cell survival and migration, of PI3K-γ for T-cell migration and macrophage polarization, and of dual inhibition of PI3K-δ,γ for efficacious reduction of leukemia burden. We also show that samples from patients whose disease progressed on ibrutinib were responsive to duvelisib therapy in a xenograft model, irrespective of BTK mutations. In support of this, we report a patient with ibrutinib-resistant CLL, bearing a clone with BTK and PLCγ2 mutations, who responded immediately to single-agent duvelisib with redistribution lymphocytosis followed by a partial clinical remission associated with modulation of T and myeloid cells. CONCLUSIONS Our data define the mechanism of action whereby dual inhibition of PI3K-δ,γ affects CLL B-cell numbers and T and myeloid cell pro-leukemia functions and support the use of duvelisib as a valuable approach for therapeutic interventions, including for patients refractory to BTKi.
Collapse
Affiliation(s)
- Shih-Shih Chen
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Jacqueline C. Barrientos
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Gerardo Ferrer
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Morgan King-Richards
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Yu-Ju Chen
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Priyadarshini Ravichandran
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Michael Ibrahim
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Yasmine Kieso
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | | | | | | | | | | | | | - Kanti R. Rai
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Nicholas Chiorazzi
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| |
Collapse
|
3
|
Methot JL, Zhou H, McGowan MA, Anthony NJ, Christopher M, Garcia Y, Achab A, Lipford K, Trotter BW, Altman MD, Fradera X, Lesburg CA, Li C, Alves S, Chappell CP, Jain R, Mangado R, Pinheiro E, Williams SMG, Goldenblatt P, Hill A, Shaffer L, Chen D, Tong V, McLeod RL, Lee HH, Yu H, Shah S, Katz JD. Projected Dose Optimization of Amino- and Hydroxypyrrolidine Purine PI3Kδ Immunomodulators. J Med Chem 2021; 64:5137-5156. [PMID: 33797901 DOI: 10.1021/acs.jmedchem.1c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses. Treatment of C57BL/6-Foxp3-GDL reporter mice with 30 and 100 mg/kg/day of 3c (MSD-496486311) led to a 70% reduction in Foxp3-expressing regulatory T cells as observed through bioluminescence imaging with luciferin, consistent with the role of PI3K/AKT signaling in Treg cell proliferation. As a model for allergic rhinitis and asthma, treatment of ovalbumin-challenged Brown Norway rats with 0.3 to 30 mg/kg/day of 3c gave a dose-dependent reduction in pulmonary bronchoalveolar lavage inflammation eosinophil cell count.
Collapse
Affiliation(s)
- Joey L Methot
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hua Zhou
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Meredeth A McGowan
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Neville John Anthony
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Matthew Christopher
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Yudith Garcia
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Abdelghani Achab
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Kathryn Lipford
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Benjamin Wesley Trotter
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Xavier Fradera
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Charles A Lesburg
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Chaomin Li
- Process Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Stephen Alves
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Craig P Chappell
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Renu Jain
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Ruban Mangado
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Elaine Pinheiro
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Sybill M G Williams
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Peter Goldenblatt
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Armetta Hill
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Lynsey Shaffer
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Dapeng Chen
- Preclinical Pharmacokinetics and Drug Metabolism, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Vincent Tong
- Preclinical Pharmacokinetics and Drug Metabolism, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Robbie L McLeod
- In Vivo Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hyun-Hee Lee
- In Vivo Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hongshi Yu
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Sanjiv Shah
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Jason D Katz
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| |
Collapse
|
4
|
Campbell CM, Guha A, Haque T, Neilan TG, Addison D. Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review. J Clin Med 2020; 9:E2935. [PMID: 32932930 PMCID: PMC7565788 DOI: 10.3390/jcm9092935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in efforts to identify therapies to ameliorate adverse clinical outcomes. The recognition of the key role for increased inflammation in COVID-19 has led to a proliferation of clinical trials targeting inflammation. The purpose of this review is to characterize the current state of immunotherapy trials in COVID-19, and focuses on associated cardiotoxicities, given the importance of pharmacovigilance. The search terms related to COVID-19 were queried in ClinicalTrials.gov. A total of 1621 trials were identified and screened for interventional trials directed at inflammation. Trials (n = 226) were fully assessed for the use of a repurposed drug, identifying a total of 141 therapeutic trials using a repurposed drug to target inflammation in COVID-19 infection. Building on the results of the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial demonstrating the benefit of low dose dexamethasone in COVID-19, repurposed drugs targeting inflammation are promising. Repurposed drugs directed at inflammation in COVID-19 primarily have been drawn from cancer therapies and immunomodulatory therapies, specifically targeted anti-inflammatory, anti-complement, and anti-rejection agents. The proposed mechanisms for many cytokine-directed and anti-rejection drugs are focused on evidence of efficacy in cytokine release syndromes in humans or animal models. Anti-complement-based therapies have the potential to decrease both inflammation and microvascular thrombosis. Cancer therapies are hypothesized to decrease vascular permeability and inflammation. Few publications to date describe using these drugs in COVID-19. Early COVID-19 intervention trials have re-emphasized the subtle, but important cardiotoxic sequelae of potential therapies on outcomes. The volume of trials targeting the COVID-19 hyper-inflammatory phase continues to grow rapidly with the evaluation of repurposed drugs and late-stage investigational agents. Leveraging known clinical safety profiles and pharmacodynamics allows swift investigation in clinical trials for a novel indication. Physicians should remain vigilant for cardiotoxicity, often not fully appreciated in small trials or in short time frames.
Collapse
Affiliation(s)
- Courtney M. Campbell
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Tamanna Haque
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02144, USA;
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Palma G, Pasqua T, Silvestri G, Rocca C, Gualtieri P, Barbieri A, De Bartolo A, De Lorenzo A, Angelone T, Avolio E, Botti G. PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Front Immunol 2020; 11:2094. [PMID: 32973818 PMCID: PMC7472874 DOI: 10.3389/fimmu.2020.02094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1β, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.
Collapse
Affiliation(s)
- Giuseppe Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giovannino Silvestri
- Institute of Human Virology, Division of Infectious Agents and Cancer, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Paola Gualtieri
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Barbieri
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
- National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Ennio Avolio
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| |
Collapse
|