1
|
Clemmer JS, Pruett WA, Hester RL. Predicting chronic responses to calcium channel blockade with a virtual population of African Americans with hypertensive chronic kidney disease. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1327357. [PMID: 39606582 PMCID: PMC11600446 DOI: 10.3389/fsysb.2024.1327357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic kidney disease (CKD) is associated with the progressive loss of functional nephrons and hypertension (HTN). Clinical studies demonstrate calcium channel blocker (CCB) therapy mitigates the decline in renal function in humans with essential HTN. However, there are few long-term clinical studies that determine the impact of CCBs in patients with hypertensive CKD. African Americans (AA) have a higher prevalence of CKD and a faster progression to total kidney failure as compared to the white population but the mechanisms are poorly understood. Both clinical evidence (the African American Study of Kidney Disease and Hypertension, or AASK trial) and experimental studies have demonstrated that CCB may expose glomerular capillaries to high systemic pressures and exacerbate CKD progression. Therefore, using a large physiological model, we set out to replicate the AASK trial findings, predict renal hemodynamic responses and the role of the renin-angiotensin system during CCB antihypertensive therapy in a virtual population, and hypothesize mechanisms underlying those findings. Our current mathematical model, HumMod, is comprised of integrated systems that play an integral role in long-term blood pressure (BP) control such as neural, endocrine, circulatory, and renal systems. Parameters (n=341) that control these systems were randomly varied and resulted in 1400 unique models that we define as a virtual population. We calibrated these models to individual patient level data from the AASK trial: BP and glomerular filtration rate (GFR) before and after 3 years of amlodipine (10 mg/day). After calibration, the new virtual population (n=165) was associated with statistically similar BP and GFR before and after CCB. Baseline factors such as elevated single nephron GFR and low tubuloglomerular feedback were correlated with greater declines in renal function and increased glomerulosclerosis after 3 years of CCB. Blocking the renin-angiotensin system (RAS) in the virtual population decreased glomerular pressure, limited glomerular damage, and further decreased BP (-14 ± 8 mmHg) as compared to CCB alone (-11 ± 9 mmHg). Our simulations echo the potential risk of CCB monotherapy in AA CKD patients and support blockade of the renin angiotensin system as a valuable tool in renal disease treatment when combined with CCB therapy.
Collapse
Affiliation(s)
- John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - W Andrew Pruett
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
2
|
Hirata T, Fan F, Fan L, Amin G, White T, Geurts AM, Kojima N, Takahashi T, Miyata N, Williams J, Roman RJ. Knockout of Matrix Metalloproteinase 2 Opposes Hypertension- and Diabetes-induced Nephropathy. J Cardiovasc Pharmacol 2023; 82:445-457. [PMID: 37643020 PMCID: PMC10691661 DOI: 10.1097/fjc.0000000000001473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
ABSTRACT The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFβ1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA
| | - Letao Fan
- Research Headquarters of Pharmaceutical Operation, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Teisuke Takahashi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Noriyuki Miyata
- Research Headquarters of Pharmaceutical Operation, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Jan Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
3
|
Clemmer JS, Yen TE, Obi Y. Modeling the renoprotective mechanisms of SGLT2 inhibition in hypertensive chronic kidney disease. Physiol Rep 2023; 11:e15836. [PMID: 37957121 PMCID: PMC10643202 DOI: 10.14814/phy2.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023] Open
Abstract
Sodium-glucose cotransporter (SGLT)-2 inhibitors have recently been approved for chronic kidney disease (CKD) based on their ability to lower proteinuria and slow CKD progression independent of diabetes status. In diabetic renal disease, modulation of tubuloglomerular feedback (TGF) leading to lower intraglomerular pressure has been postulated as one of the mechanisms of renal protection with SGLT2 inhibition; however, this mechanism has not been sufficiently explored in non-diabetic CKD. We hypothesized that SGLT2 inhibition exerts renoprotection in CKD through increasing TGF despite normoglycemia. To test this hypothesis, we used an integrative mathematical model of human physiology, HumMod. Stage 3 CKD conditions were simulated by reducing nephron mass which was associated with hypertension, low glomerular filtration rate (GFR) (55 mL/min), hyperfiltration of remnant nephrons, elevated albuminuria (500 mg/day), and minimal levels of urinary glucose (0.02 mmol/L). SGLT2 inhibition was associated with acute reductions in GFR associated with afferent arteriolar vasoconstriction due to TGF. After 12 months, glomerular pressure, nephron damage, and chronic GFR decline were reduced with SGLT2 inhibition with additional SGLT1 inhibitory effects further enhancing these effects. This model supports the use of SGLT2 inhibitors to reduce hyperfiltration in CKD and mitigate renal disease progression, even in the absence of diabetes.
Collapse
Affiliation(s)
- John S. Clemmer
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Timothy E. Yen
- Department of Medicine, Division of NephrologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Yoshitsugu Obi
- Department of Medicine, Division of NephrologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
4
|
Williams JM, Murphy SR, Wu W, Border JJ, Fan F, Roman RJ. Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy superimposed with hypertension. GeroScience 2022; 44:2845-2861. [PMID: 35767209 PMCID: PMC9768063 DOI: 10.1007/s11357-022-00610-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetes, hypertension, and aging are major contributors to cardiovascular and chronic kidney disease (CKD). Sodium/glucose cotransporter 2 (SGLT2) inhibitors have become a preferred treatment for type II diabetic patients since they have cardiorenal protective effects. However, most elderly diabetic patients also have hypertension, and the effects of SGLT2 inhibitors have not been studied in hypertensive diabetic patients or animal models. The present study examined if controlling hyperglycemia with empagliflozin, or given in combination with lisinopril, slows the progression of renal injury in hypertensive diabetic rats. Studies were performed using hypertensive streptozotocin-induced type 1 diabetic Dahl salt-sensitive (STZ-SS) rats and in deoxycorticosterone-salt hypertensive type 2 diabetic nephropathy (T2DN) rats. Administration of empagliflozin alone or in combination with lisinopril reduced blood glucose, proteinuria, glomerular injury, and renal fibrosis in STZ-SS rats without altering renal blood flow (RBF) or glomerular filtration rate (GFR). Blood pressure and renal hypertrophy were also reduced in rats treated with empagliflozin and lisinopril. Administration of empagliflozin alone or in combination with lisinopril lowered blood glucose, glomerulosclerosis, and renal fibrosis but had no effect on blood pressure, kidney weight, or proteinuria in hypertensive T2DN rats. RBF was not altered in any of the treatment groups, and GFR was elevated in empagliflozin-treated hypertensive T2DN rats. These results indicate that empagliflozin is highly effective in controlling blood glucose levels and slows the progression of renal injury in both hypertensive type 1 and type 2 diabetic rats, especially when given in combination with lisinopril to lower blood pressure.
Collapse
Affiliation(s)
- Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjie Wu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
5
|
Zhao T, Li M, Xiang Q, Lie B, Chen D, Wang W, Li X, Xu T, Zhang X, Li Y, Dong R, Du X, Wang Y, Yang J, He B, Zhu Q, Duan T, Li Z, Xu Y. Yishen Huashi Granules Ameliorated the Development of Diabetic Nephropathy by Reducing the Damage of Glomerular Filtration Barrier. Front Pharmacol 2022; 13:872940. [PMID: 35935814 PMCID: PMC9353776 DOI: 10.3389/fphar.2022.872940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/21/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the most common complications of diabetes and the primary cause of end-stage renal disease. At present, renin–angiotensin–aldosterone system (RAAS) blockers have been applied as first-class drugs to restrain development of DN; however, its long-term effect is limited. Recent evidence has shown definite effects of Chinese medicine on DN. Yishen Huashi (YSHS) granule is a traditional Chinese Medicine prescription that has been used in the clinic to treat DN, but its mechanism is not understood. Methods: In the present study, both in vitro and in vivo studies were carried out. The DN model was induced by STZ in Wistar rats, and GEnC and HPC cell lines were applied in the in vitro study. Quality of YSHS was evaluated by LC-MS/MS. A metabolomic study of urine was carried out by LC-MS; influence of YSHS on composition of DN was analyzed by network pharmacology. Mechanism of the YSHS on DN was analyzed by Q-PCR, Western Blot, and multi-immunological methods. Results: We found YSHS administration significantly reduced levels of HbA1c and mALB. Histopathological analysis found that YSHS preserved integrity of glomerular filtration barrier by preserving viability of glomerular endothelial cells and podocytes, inhibiting glomerular fibrosis, reducing oxidative stress damage, and enhancing cross-talk among glomerular endothelial cells and podocytes. Network pharmacology, differential metabolite analysis, as well as intracellular pathway experimental study demonstrated that the PI3K/AKT/mTOR signaling pathway played a pivotal role in it. Conclusion: Our present findings supplied new understanding toward the mechanism of YSHS on inhibiting DN.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Minyi Li
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Qian Xiang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Beifeng Lie
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Deqi Chen
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xuling Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Tiancheng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yuntong Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Ruixue Dong
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xinwen Du
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yilin Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Junzheng Yang
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Bao He
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Quan Zhu
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Tingting Duan
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| | - Zhenghai Li
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macao, China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| |
Collapse
|
6
|
Gonzalez-Fernandez E, Fan L, Wang S, Liu Y, Gao W, Thomas KN, Fan F, Roman RJ. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases. Physiol Genomics 2022; 54:58-70. [PMID: 34859687 PMCID: PMC8799388 DOI: 10.1152/physiolgenomics.00119.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Moore KH, Clemmer JS. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling. Am J Physiol Renal Physiol 2021; 321:F548-F557. [PMID: 34486399 DOI: 10.1152/ajprenal.00233.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive functional loss of nephrons and hypertension (HTN). Some antihypertensive regimens attenuate the progression of CKD (blockers of the renin-angiotensin system). Although studies have suggested that calcium channel blocker (CCB) therapy mitigates the decline in renal function in humans with essential HTN, there are few long-term clinical studies that have determined the impact of CCBs in patients with hypertensive CKD. Dihydropyridine (DHP) or L-type CCBs preferentially vasodilate the afferent arteriole and have been associated with glomerular HTN and increases in proteinuria in animal models with low renal function. Small clinical studies in vulnerable populations with renal disease such as African Americans, children, and diabetics have also suggested that DHP CCBs exacerbate glomerular injury, which questions the renoprotective effect of this class of antihypertensive drug. We used an established integrative mathematical model of human physiology, HumMod, to test the hypothesis that DHP CCB therapy exacerbates pressure-induced glomerular injury in hypertensive CKD. Over a simulation of 3 yr, CCB therapy reduced mean blood pressure by 14-16 mmHg in HTN both with and without CKD. Both impaired tubuloglomerular feedback and low baseline renal function exacerbated glomerular pressure, glomerulosclerosis, and the decline in renal function during L-type CCB treatment. However, simulating CCB therapy that inhibited both L- and T-type calcium channels increased efferent arteriolar vasodilation and alleviated glomerular damage. These simulations support the evidence that DHP (L-type) CCBs potentiate glomerular HTN during CKD and suggest that T/L-type CCBs are valuable in proteinuric renal disease treatment.NEW & NOTEWORTHY Our physiological model replicates clinical trial results and provides unique insights into possible mechanisms that play a role in glomerular injury and hypertensive kidney disease progression during chronic CCB therapy. Specifically, these simulations predict the temporal changes in renal function with CCB treatment and demonstrate important roles for tubuloglomerular feedback and efferent arteriolar conductance in the control of chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyle H Moore
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|