1
|
Sun L, Xu L, Duan T, Xi Y, Deng Z, Luo S, Liu C, Yang C, Liu H, Sun L. CAV1 Exacerbates Renal Tubular Epithelial Cell Senescence by Suppressing CaMKK2/AMPK-Mediated Autophagy. Aging Cell 2025:e14501. [PMID: 39887553 DOI: 10.1111/acel.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Renal proximal tubular epithelial cell (PTEC) senescence and defective autophagy contribute to kidney aging, but the mechanisms remain unclear. Caveolin-1 (CAV1), a crucial component of cell membrane caveolae, regulates autophagy and is associated with cellular senescence. However, its specific role in kidney aging is poorly understood. In this study, we generated Cav1 gene knockout mice and induced kidney aging using D-galactose (D-gal). The results showed that CAV1 expression increased in the renal cortex of the aging mice, which was accompanied by exacerbated renal interstitial fibrosis, elevated levels of senescence-associated proteins γH2AX and p16INK4a, and increased β-galactosidase activity. Moreover, autophagy and AMPK phosphorylation in PTECs were reduced. These phenotypes were partially reversed in D-gal-induced Cav1 knockout mice. Similar results were observed in D-gal-induced human proximal tubular epithelial (HK-2) cells, but these effects were blocked when AMPK activation was inhibited. Additionally, in CaMKK2 knockdown HK-2 cells, siCAV1 failed to promote AMPK phosphorylation, whereas this effect persisted when STK11 was knocked down. Besides, we examined the phosphorylation of CaMKK2 and found that siCAV1 increased its activity. Given that CaMKK2 activity is affected by intracellular Ca2+, we examined Ca2+ levels in HK-2 cells and found that D-gal treatment reduced intracellular Ca2+ concentration, but CAV1 knockdown did not alter these levels. Through GST pull-down assays, we demonstrated a direct interaction between CAV1 and CaMKK2. In conclusion, these findings suggest that CAV1 exacerbates renal tubular epithelial cell senescence by directly interacting with CaMKK2, suppressing its activity and AMPK-mediated autophagy via a Ca2+-independent pathway.
Collapse
Affiliation(s)
- Liya Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lujun Xu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tongyue Duan
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
An Z, Tian J, Zhao X, Liu L, Yang X, Zhang M, Zhang L, Song X. Regulation of cardiovascular and cardiac functions by caveolins. FEBS J 2024; 291:3753-3761. [PMID: 37060249 DOI: 10.1111/febs.16798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Caveolae are intracellular vesicles with diameters ranging from 50 to 100 nm. The role of caveolins in mediating oxidative stress, autophagy, apoptosis, fibrosis, and vascular remodeling has attracted increasing attention in cardiovascular therapy. Several studies have suggested that caveolin could be a therapeutic target for the treatment of cardiac and/or vascular injury via several pathophysiological mechanisms. Despite substantial advances in our understanding of the basic biology of vesicles over the past decade, the relevance and specific role of these mechanisms in cardiovascular homeostasis remains ambiguous. Here, we review the macroscopic role of caveolins in protecting cardiac function and, at the microscopic level, examine possible cardioprotective caveolar mechanisms, including their antioxidative stress, antiapoptosis, autophagy-regulatory, antifibrosis, and angiogenesis-promoting properties. We believe that the role of caveolins in cardiac functioning has not been fully elucidated and is an important line of future research with several cardioprotective implications.
Collapse
Affiliation(s)
- Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingduo Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
MacKenzie B, Mahavadi P, Jannini-Sa YAP, Creyns B, Coelho AL, Espindola M, Ruppert C, Hötzenecker K, Hogaboam C, Guenther A. Pre-clinical proof-of-concept of anti-fibrotic activity of caveolin-1 scaffolding domain peptide LTI-03 in ex vivo precision cut lung slices from patients with Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.589970. [PMID: 38712072 PMCID: PMC11071419 DOI: 10.1101/2024.04.24.589970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Rationale: While rodent lung fibrosis models are routinely used to evaluate novel antifibrotics, these models have largely failed to predict clinical efficacy of novel drug candidates for Idiopathic Pulmonary Fibrosis (IPF). Moreover, single target therapeutic strategies for IPF have failed and current multi-target standard of care drugs are not curative. Caveolin-1 (CAV-1) is an integral membrane protein, which, via its caveolin scaffolding domain (CSD), interacts with caveolin binding domains (CBD). CAV-1 regulates homeostasis, and its expression is decreased in IPF lungs. LTI-03 is a seven amino acid peptide derived from the CSD and formulated for dry powder inhalation; it was well tolerated in normal volunteers ( NCT04233814 ) and a safety trial is underway in IPF patients ( NCT05954988 ). Objectives: Anti-fibrotic efficacy of LTI-03 and other CSD peptides has been observed in IPF lung monocultures, and rodent pulmonary, dermal, and heart fibrosis models. This study aimed to characterize progressive fibrotic activity in IPF PCLS explants and to evaluate the antifibrotic effects of LTI-03 and nintedanib in this model. Methods: First, CBD regions were identified in IPF signaling proteins using in silico analysis. Then, IPF PCLS (n=8) were characterized by COL1A1 immunostaining, multiplex immunoassays, and bulk RNA sequencing following treatment every 12hrs with LTI-03 at 0.5, 3.0, or 10 μM; nintedanib at 0.1 μM or 1 μM; or control peptide (CP) at 10 μM. Measurements and Main Results: CBDs were present in proteins implicated in IPF, including VEGFR, FGFR and PDGFR. Increased expression of profibrotic mediators indicated active fibrotic activity in IPF PCLS over five days. LTI-03 dose dependently decreased COL1A1 staining, and like nintedanib, decreased profibrotic proteins and transcripts. Unlike nintedanib, LTI-03 did not induce cellular necrosis signals. Conclusion: IPF PCLS explants demonstrate molecular activity indicative of fibrosis during 5 days in culture and LTI-03 broadly attenuated pro-fibrotic proteins and pathways, further supporting the potential therapeutic effectiveness of LTI-03 for IPF.
Collapse
|
4
|
Tomita S, Nakanishi N, Ogata T, Higuchi Y, Sakamoto A, Tsuji Y, Suga T, Matoba S. The Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling in pulmonary hypertension by interfering with BMPR2/Caveolin-1 binding. Commun Biol 2024; 7:40. [PMID: 38182755 PMCID: PMC10770141 DOI: 10.1038/s42003-023-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Caveolin-1 (CAV1) and Cavin-1 are components of caveolae, both of which interact with and influence the composition and stabilization of caveolae. CAV1 is associated with pulmonary arterial hypertension (PAH). Bone morphogenetic protein (BMP) type 2 receptor (BMPR2) is localized in caveolae associated with CAV1 and is commonly mutated in PAH. Here, we show that BMP/Smad signaling is suppressed in pulmonary microvascular endothelial cells of CAV1 knockout mice. Moreover, hypoxia enhances the CAV1/Cavin-1 interaction but attenuates the CAV1/BMPR2 interaction and BMPR2 membrane localization in pulmonary artery endothelial cells (PAECs). Both Cavin-1 and BMPR2 are associated with the CAV1 scaffolding domain. Cavin-1 decreases BMPR2 membrane localization by inhibiting the interaction of BMPR2 with CAV1 and reduces Smad signal transduction in PAECs. Furthermore, Cavin-1 knockdown is resistant to CAV1-induced pulmonary hypertension in vivo. We demonstrate that the Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling and is a promising target for the treatment of PAH.
Collapse
Affiliation(s)
- Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
5
|
Xi Y, Ge Y, Hu D, Xia T, Chen J, Zhang C, Cui Y, Xiao H. Caveolin-1 scaffolding domain peptide prevents corpus cavernosum fibrosis and erectile dysfunction in bilateral cavernous nerve injury-induced rats. J Sex Med 2023; 20:1274-1284. [PMID: 37724695 DOI: 10.1093/jsxmed/qdad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Corpus cavernosum (CC) fibrosis significantly contributes to post-radical prostatectomy erectile dysfunction (pRP-ED). Caveolin-1 scaffolding domain (CSD)-derived peptide has gained significant concern as a potent antagonist of tissue fibrosis. However, applying CSD peptide on bilateral cavernous nerve injury (BCNI)-induced rats remains uninvestigated. AIM The aim was to explore the therapeutic outcome and underlying mechanism of CSD peptide for preventing ED in BCNI rats according to the hypothesis that CSD peptide may exert beneficial effects on erectile tissue and function following BCNI through limiting collagen synthesis in CC smooth muscle cells (CCSMCs) and CC fibrosis. METHODS After completing a random assignment of male Sprague Dawley rats (10 weeks of age), BCNI rats received either saline or CSD peptide treatment, as opposed to sham-operated rats. The evaluations of erectile function (EF) and succedent collection and histological and molecular biological examinations of penile tissue were accomplished 3 weeks postoperatively. In addition, the fibrotic model of CCSMCs was used to further explore the mechanism of CSD peptide action in vitro. OUTCOMES The assessments of EF, SMC/collagen ratio, α-smooth muscle actin, caveolin-1 (CAV1), and profibrotic indicators expressions were conducted. RESULTS BCNI rats exhibited significant decreases in EF, SMC/collagen ratio, α-SMA, and CAV1 levels, and increases in collagen content together with transforming growth factor (TGF)-β1/Smad2 activity. However, impaired EF, activated CC fibrosis, and Smad2 signaling were attenuated after 3 weeks of CSD peptide treatment in BCNI rats. In vitro, TGF-β1-induced CCSMCs underwent fibrogenetic transformation characterized by lower expression of CAV1, higher collagen composition, and phosphorylation of Smad2; then, the delivery of CSD peptide could significantly block CCSMC fibrosis by inactivating Smad2 signaling. CLINICAL IMPLICATIONS Based on available evidence of CSD peptide in the prevention of ED in BCNI rats, this study can aid in the development and clinical application of CSD peptide targeting pRP-ED. STRENGTHS AND LIMITATIONS This study provides data to suggest that CSD peptide protects against BCNI-induced deleterious alterations in EF and CC tissues. However, the available evidence still does not fully clarify the detailed mechanism of action of CSD peptide. CONCLUSION Administration of CSD peptide significantly retarded collagen synthesis in CCSMCs, limited CC fibrosis, and prevented ED via confrontation of TGF-β1/Smad signaling in BCNI rats.
Collapse
Affiliation(s)
- Yuhang Xi
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Daoyuan Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Tian Xia
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Yubin Cui
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| |
Collapse
|
6
|
Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis. Sci Rep 2022; 12:11086. [PMID: 35773303 PMCID: PMC9246916 DOI: 10.1038/s41598-022-14832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of interstitial lung disease. IPF is characterized by irreversible scarring of the lungs leading to lung function decline. Although the etiology remains poorly understood, dysregulated autophagy in alveolar-epithelial cells (AECs) together with interplay between apoptotic-AECs and proliferative-myofibroblasts have been strongly implicated in IPF pathogenesis. Recent studies have revealed that a caveolin-1-derived 7-mer peptide, CSP7, mitigates established PF at least in part by improving AEC viability. In the present study, we aimed to determine whether and how CSP7 regulates autophagy in fibrotic-lung AECs. We found that p53 and autophagic proteins were markedly upregulated in AECs from mice with single/multi-doses of bleomycin—or silica-induced PF. This was abolished following treatment of PF-mice with CSP7. Further, CSP7 abrogated silica- or bleomycin-induced p53 and autophagy proteins in AECs. Immunoprecipitation further revealed that CSP7 abolishes the interaction of caveolin-1 with LC3BII and p62 in AECs. AEC-specific p53-knockout mice resisted silica- or bleomycin-induced changes in autophagy proteins, or CSP7 treatment. Our findings provide a novel mechanism by which CSP7 inhibits dysregulated autophagy in injured AECs and mitigates existing PF. These results affirm the potential of CSP7 for treating established PF, including IPF and silicosis.
Collapse
|
7
|
Reese CF, Chinnakkannu P, Tourkina E, Hoffman S, Kuppuswamy D. Multiple subregions within the caveolin-1 scaffolding domain inhibit fibrosis, microvascular leakage, and monocyte migration. PLoS One 2022; 17:e0264413. [PMID: 35213624 PMCID: PMC8880820 DOI: 10.1371/journal.pone.0264413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
The caveolin-1 scaffolding domain (CSD, amino acids 82-101 of caveolin-1) has been shown to suppress bleomycin-induced lung and skin fibrosis and angiotensin II (AngII)-induced myocardial fibrosis. To identify active subregions within CSD, we split its sequence into three slightly overlapping 8-amino acid subregions (82-89, 88-95, and 94-101). Interestingly, all three peptides showed activity. In bleomycin-treated mice, all three subregions suppressed the pathological effects on lung and skin tissue morphology. In addition, while bone marrow monocytes isolated from bleomycin-treated mice showed greatly enhanced migration in vitro toward CXCL12, treatment in vivo with CSD and its subregions almost completely suppressed this enhanced migration. In AngII-induced heart failure, both 82-89 and 88-95 significantly suppressed fibrosis (both Col I and HSP47 levels), microvascular leakage, and heart weight/ body weight ratio (HW/BW) while improving ventricular function. In contrast, while 94-101 suppressed the increase in Col I, it did not improve the other parameters. The idea that all three subregions can be active depending on the assay was further supported by experiments studying the in vitro migration of human monocytes in which all three subregions were extremely active. These studies are very novel in that it has been suggested that there is only one active region within CSD that is centered on amino acids 90-92. In contrast, we demonstrate here the presence of other active regions within CSD.
Collapse
Affiliation(s)
- Charles F. Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Panneerselvam Chinnakkannu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| |
Collapse
|
8
|
Wang X, Li X, Ong H, Tan T, Park KH, Bian Z, Zou X, Haggard E, Janssen PM, Merritt RE, Pawlik TM, Whitson BA, Mokadam NA, Cao L, Zhu H, Cai C, Ma J. MG53 suppresses NFκB activation to mitigate age-related heart failure. JCI Insight 2021; 6:e148375. [PMID: 34292883 PMCID: PMC8492351 DOI: 10.1172/jci.insight.148375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with chronic oxidative stress and inflammation that impact the tissue repair and regeneration capacity. MG53 is a TRIM family protein that facilitates repair of cell membrane injury in a redox-dependent manner. Here we demonstrate that the expression of MG53 is reduced in failing human heart and aging mouse heart, concomitant with elevated NFκB activation. We evaluate the safety and efficacy of longitudinal, systemic administration of recombinant human MG53 (rhMG53) protein in aged mice. Echocardiography and pressure-volume loop measurements reveal beneficial effects of rhMG53 treatment in improving heart function of aging mice. Biochemical and histological studies demonstrate the cardioprotective effects of rhMG53 are linked to suppression of NFκB-mediated inflammation, reducing apoptotic cell death and oxidative stress in the aged heart. Repetitive administrations of rhMG53 in aged mice do not have adverse effects on major vital organ functions. These findings support the therapeutic value of rhMG53 in treating age-related decline in cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Hannah Ong
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Ki Ho Park
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Zehua Bian
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, United States of America
| | - Erin Haggard
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Paul M Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States of America
| | - Robert E Merritt
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Bryan A Whitson
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Nahush A Mokadam
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Lei Cao
- The Ohio State University, Columbus, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, United States of America
| |
Collapse
|