1
|
Szewczyk A, Bednarczyk P, Kulawiak B, Żochowska M, Kalenik B, Lewandowska J, Pytlak K, Gałecka S, Wrzosek A, Koprowski P. Mitochondrial potassium channels: New properties and functions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149546. [PMID: 39933686 DOI: 10.1016/j.bbabio.2025.149546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Mitochondria are recently implicated in phenomena such as cytoprotection, cellular senescence, tumor metabolism, and inflammation. The basis of these processes relies on biochemical functions of mitochondria such as the synthesis of reactive oxygen species or biophysical properties such as the integrity of the inner mitochondrial membrane. The transport of potassium cations plays an important role in all these events. The K+ influx is mediated by potassium channels present in the inner mitochondrial membrane. In this article, we present an overview of our new findings on the properties of mitochondrial large-conductance calcium-activated and mitochondrial ATP-regulated potassium channels. This concerns the role of mitochondrial potassium channels in cellular senescence, and interactions with other mitochondrial proteins or small molecules such as quercetin, hemin, and hydrogen sulfide. We also discuss the prospects of research on potassium channels present in mitochondria.
Collapse
Affiliation(s)
- Adam Szewczyk
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland.
| | - Piotr Bednarczyk
- The Warsaw University of Life Sciences, 166 Nowoursynowska str, 02-787 Warsaw, Poland
| | - Bogusz Kulawiak
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Monika Żochowska
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Barbara Kalenik
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Joanna Lewandowska
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Karolina Pytlak
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Shur Gałecka
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Nencki Institute of Experimental Biology, 3 Pasteur str, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
3
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
4
|
Flori L, Montanaro R, Pagnotta E, Ugolini L, Righetti L, Martelli A, Di Cesare Mannelli L, Ghelardini C, Brancaleone V, Testai L, Calderone V. Erucin Exerts Cardioprotective Effects on Ischemia/Reperfusion Injury through the Modulation of mitoKATP Channels. Biomedicines 2023; 11:3281. [PMID: 38137502 PMCID: PMC10740937 DOI: 10.3390/biomedicines11123281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Modulation of mitochondrial K channels represents a pharmacological strategy to promote cardioprotective effects. Isothiocyanates emerge as molecules capable of releasing hydrogen sulfide (H2S), an endogenous pleiotropic gasotransmitter responsible for anti-ischemic cardioprotective effects also through the involvement of mitoK channels. Erucin (ERU) is a natural isothiocyanate resulting from the enzymatic hydrolysis of glucosinolates (GSLs) present in Eruca sativa Mill. seeds, an edible plant of the Brassicaceae family. In this experimental work, the specific involvement of mitoKATP channels in the cardioprotective effect induced by ERU was evaluated in detail. An in vivo preclinical model of acute myocardial infarction was reproduced in rats to evaluate the cardioprotective effect of ERU. Diazoxide was used as a reference compound for the modulation of potassium fluxes and 5-hydroxydecanoic acid (5HD) as a selective blocker of KATP channels. Specific investigations on isolated cardiac mitochondria were carried out to evaluate the involvement of mitoKATP channels. The results obtained showed ERU cardioprotective effects against ischemia/reperfusion (I/R) damage through the involvement of mitoKATP channels and the consequent depolarizing effect, which in turn reduced calcium entry and preserved mitochondrial integrity.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (L.F.); (A.M.); (V.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (R.M.); (V.B.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops, CREA—Council for Agricultural Research and Economics, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Luisa Ugolini
- Research Centre for Cereal and Industrial Crops, CREA—Council for Agricultural Research and Economics, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops, CREA—Council for Agricultural Research and Economics, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (L.F.); (A.M.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (R.M.); (V.B.)
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (L.F.); (A.M.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (L.F.); (A.M.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
5
|
Głuchowska A, Kalenik B, Kulawiak B, Wrzosek A, Szewczyk A, Bednarczyk P, Mosieniak G. Lack of activity of the mitochondrial large-conductance calcium-regulated potassium channels in senescent vascular smooth muscle cells. Mech Ageing Dev 2023; 215:111871. [PMID: 37689317 DOI: 10.1016/j.mad.2023.111871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A limited number of studies have shown functional changes in mitochondrial ion channels in aging and senescent cells. We have identified, for the first time, mitochondrial large-conductance calcium-regulated potassium channels in human smooth muscle mitochondria. This channel, with a conductance of 273 pS, was regulated by calcium ions and membrane potential. Additionally, it was activated by the potassium channel opener NS11021 and blocked by paxilline. Importantly, we have shown that senescence of these cells induced by hydrogen peroxide treatment leads to the disappearance of potassium channel protein levels and channel activity measured by the single channel patch-clamp technique. Our data suggest that disturbances in the expression of mitochondrial large conductance calcium-regulated potassium channels may be hallmarks of cellular senescence and contribute to the misregulation of mitochondrial function in senescent cells.
Collapse
Affiliation(s)
- Agata Głuchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Barbara Kalenik
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
Testai L, Montanaro R, Flori L, Pagnotta E, Vellecco V, Gorica E, Ugolini L, Righetti L, Brancaleone V, Bucci M, Piragine E, Martelli A, Di Cesare Mannelli L, Ghelardini C, Calderone V. Persulfidation of mitoKv7.4 channels contributes to the cardioprotective effects of the H 2S-donor Erucin against ischemia/reperfusion injury. Biochem Pharmacol 2023; 215:115728. [PMID: 37524208 DOI: 10.1016/j.bcp.2023.115728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gasotransmitter deeply involved in cardiovascular homeostasis and implicated in the myocardial protection against ischemia/reperfusion. The post-translational persulfidation of cysteine residues has been identified as the mechanism through which H2S regulates a plethora of biological targets. Erucin (ERU) is an isothiocyanate produced upon hydrolysis of the glucosinolate glucoerucin, presents in edible plants of Brassicaceae family, such as Eruca sativa Mill., and it has emerged as a slow and long-lasting H2S-donor. AIM In this study the cardioprotective profile of ERU has been investigated and the action mechanism explored, focusing on the possible role of the recently identified mitochondrial Kv7.4 (mitoKv7.4) potassium channels. RESULTS Interestingly, ERU showed to release H2S and concentration-dependently protected H9c2 cells against H2O2-induced oxidative damage. Moreover, in in vivo model of myocardial infarct ERU showed protective effects, reducing the extension of ischemic area, the levels of troponin I and increasing the amount of total AnxA1, as well as co-related inflammatory outcomes. Conversely, the pre-treatment with XE991, a blocker of Kv7.4 channels, abolished them. In isolated cardiac mitochondria ERU exhibited the typical profile of a mitochondrial potassium channels opener, in particular, this isothiocyanate produced a mild depolarization of mitochondrial membrane potential, a reduction of calcium accumulation into the matrix and finally a flow of potassium ions. Finally, mitoKv7.4 channels were persulfidated in ERU-treated mitochondria. CONCLUSIONS ERU modulates the cardiac mitoKv7.4 channels and this mechanism may be relevant for cardioprotective effects.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| | - R Montanaro
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - L Flori
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - E Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Vellecco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Gorica
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - L Ugolini
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - L Righetti
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - M Bucci
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Piragine
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Kulawiak B, Żochowska M, Bednarczyk P, Galuba A, Stroud DA, Szewczyk A. Loss of the large conductance calcium-activated potassium channel causes an increase in mitochondrial reactive oxygen species in glioblastoma cells. Pflugers Arch 2023; 475:1045-1060. [PMID: 37401985 PMCID: PMC10409681 DOI: 10.1007/s00424-023-02833-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Mitochondrial potassium (mitoK) channels play an important role in cellular physiology. These channels are expressed in healthy tissues and cancer cells. Activation of mitoK channels can protect neurons and cardiac tissue against injury induced by ischemia-reperfusion. In cancer cells, inhibition of mitoK channels leads to an increase in mitochondrial reactive oxygen species, which leads to cell death. In glioma cell activity of the mitochondrial, large conductance calcium-activated potassium (mitoBKCa) channel is regulated by the mitochondrial respiratory chain. In our project, we used CRISPR/Cas9 technology in human glioblastoma U-87 MG cells to generate knockout cell lines lacking the α-subunit of the BKCa channel encoded by the KCNMA1 gene, which also encodes cardiac mitoBKCa. Mitochondrial patch-clamp experiments showed the absence of an active mitoBKCa channel in knockout cells. Additionally, the absence of this channel resulted in increased levels of mitochondrial reactive oxygen species. However, analysis of the mitochondrial respiration rate did not show significant changes in oxygen consumption in the cell lines lacking BKCa channels compared to the wild-type U-87 MG cell line. These observations were reflected in the expression levels of selected mitochondrial genes, organization of the respiratory chain, and mitochondrial morphology, which did not show significant differences between the analyzed cell lines. In conclusion, we show that in U-87 MG cells, the pore-forming subunit of the mitoBKCa channel is encoded by the KCNMA1 gene. Additionally, the presence of this channel is important for the regulation of reactive oxygen species levels in mitochondria.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland.
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Andrzej Galuba
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| |
Collapse
|
8
|
Kadam A, Jadiya P, Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front Cell Dev Biol 2023; 11:1196466. [PMID: 37601094 PMCID: PMC10434574 DOI: 10.3389/fcell.2023.1196466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
10
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
11
|
External Hemin as an Inhibitor of Mitochondrial Large-Conductance Calcium-Activated Potassium Channel Activity. Int J Mol Sci 2022; 23:ijms232113391. [DOI: 10.3390/ijms232113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is located in the inner mitochondrial membrane and seems to play a crucial role in cytoprotection. The mitoBKCa channel is regulated by many modulators, including activators, such as calcium ions and inhibitors, such as heme and its oxidized form hemin. Heme/hemin binds to the heme-binding motif (CXXCH) located between two RCK domains present in the mitochondrial matrix. In the present study, we used the patch-clamp technique in the outside-out configuration to record the activity of mitoBKCa channels. This allowed for the application of channel modulators to the intermembrane-space side of the mitoBKCa. We found that hemin applied in this configuration inhibits the activity of mitoBKCa. In addition, we proved that the observed hemin effect is specific and it is not due to its interaction with the inner mitochondrial membrane. Our data suggest the existence of a new potential heme/hemin binding site in the structure of the mitoBKCa channel located on the mitochondrial intermembrane space side, which could constitute a new way for the regulation of mitoBKCa channel activity.
Collapse
|
12
|
Kulawiak B, Szewczyk A. Current Challenges of Mitochondrial Potassium Channel Research. Front Physiol 2022; 13:907015. [PMID: 35711307 PMCID: PMC9193220 DOI: 10.3389/fphys.2022.907015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, the current challenges of mitochondrial potassium channels research were critically reviewed. Even though recent progress in understanding K+ traffic in mitochondria has been substantial, some basic issues of this process remain unresolved. Here, we focused on the critical discussion of the molecular identity of various mitochondrial potassium channels. This point helps to clarify why there are different potassium channels in specific mitochondria. We also described interactions of mitochondrial potassium channel subunits with other mitochondrial proteins. Posttranslational modifications of mitochondrial potassium channels and their import are essential but unexplored research areas. Additionally, problems with the pharmacological targeting of mitochondrial potassium channel were illustrated. Finally, the limitation of the techniques used to measure mitochondrial potassium channels was explained. We believe that recognizing these problems may be interesting for readers but will also help to progress the field of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|