1
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
2
|
Becht DC, Mohid SA, Lee JE, Zandian M, Benz C, Biswas S, Sinha VK, Ivarsson Y, Ge K, Zhang Y, Kutateladze TG. MLL4 binds TET3. Structure 2024; 32:706-714.e3. [PMID: 38579707 PMCID: PMC11162309 DOI: 10.1016/j.str.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sk Abdul Mohid
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
4
|
Kumar Sinha V, Zhang Y, Xu L, Chen YW, Picaud S, Zandian M, Biswas S, Filippakopoulos P, Wang SP, Shi X, Kutateladze TG. Histone H4K16ac Binding Function of the Triple PHD Finger Cassette of MLL4. J Mol Biol 2024; 436:168212. [PMID: 37481158 PMCID: PMC10799173 DOI: 10.1016/j.jmb.2023.168212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
The human methyltransferase MLL4 plays a critical role in embryogenesis and development, and aberrant activity of MLL4 is linked to neurodegenerative and developmental disorders and cancer. MLL4 contains the catalytic SET domain that catalyzes mono methylation of lysine 4 of histone H3 (H3K4me1) and seven plant homeodomain (PHD) fingers, six of which have not been structurally and functionally characterized. Here, we demonstrate that the triple PHD finger cassette of MLL4, harboring its fourth, fifth and sixth PHD fingers (MLL4PHD456) forms an integrated module, maintains the binding selectivity of the PHD6 finger toward acetylated lysine 16 of histone H4 (H4K16ac), and is capable of binding to DNA. Our findings highlight functional correlation between H4K16ac and H3K4me1, two major histone modifications that are recognized and written, respectively, by MLL4.
Collapse
Affiliation(s)
- Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Ortiz G, Longbotham JE, Qin SL, Zhang MY, Lee GM, Neitz RJ, Kelly MJS, Arkin MR, Fujimori DG. Identifying ligands for the PHD1 finger of KDM5A through high-throughput screening. RSC Chem Biol 2024; 5:209-215. [PMID: 38456036 PMCID: PMC10915964 DOI: 10.1039/d3cb00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
PHD fingers are a type of chromatin reader that primarily recognize chromatin as a function of lysine methylation state. Dysregulated PHD fingers are implicated in various human diseases, including acute myeloid leukemia. Targeting PHD fingers with small molecules is considered challenging as their histone tail binding pockets are often shallow and surface-exposed. The KDM5A PHD1 finger regulates the catalytic activity of KDM5A, an epigenetic enzyme often misregulated in cancers. To identify ligands that disrupt the PHD1-histone peptide interaction, we conducted a high-throughput screen and validated hits by orthogonal methods. We further elucidated structure-activity relationships in two classes of compounds to identify features important for binding. Our investigation offers a starting point for further optimization of small molecule PHD1 ligands.
Collapse
Affiliation(s)
- Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Sophia L Qin
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Gregory M Lee
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - R Jeffrey Neitz
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Michelle R Arkin
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| |
Collapse
|
6
|
Diaba-Nuhoho P. Plant homeodomain-finger protein 5A: A key player in cancer progression. Biomed Pharmacother 2023; 169:115857. [PMID: 37951028 DOI: 10.1016/j.biopha.2023.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
PHF5A is a member of the zinc-finger proteins. To advance knowledge on their role in carcinogenesis, data from experimental studies, animal models and clinical studies in different tumorigenesis have been reviewed. Furthermore, PHF5A as an oncogenic function, is frequently high expressed in tumor cells and a potential prognostic marker for different cancers. PHF5A is implicated in the regulation of cancer cell proliferation, invasion, migration and metastasis. Knockdown of PHF5A prevented the invasion and metastasis of tumor cells. Here, the role of PHF5A in different cancers and their possible mechanism in relation to recent literature is reviewed and discussed. There is an open promising perspective to their therapeutic management for different cancer types.
Collapse
Affiliation(s)
- Patrick Diaba-Nuhoho
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, Germany.
| |
Collapse
|
7
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Gaurav N, Kutateladze TG. Non-histone binding functions of PHD fingers. Trends Biochem Sci 2023; 48:610-617. [PMID: 37061424 PMCID: PMC10330121 DOI: 10.1016/j.tibs.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/17/2023]
Abstract
Plant homeodomain (PHD) fingers comprise a large and well-established family of epigenetic readers that recognize histone H3. A typical PHD finger binds to the unmodified or methylated amino-terminal tail of H3. This interaction is highly specific and can be regulated by post-translational modifications (PTMs) in H3 and other domains present in the protein. However, a set of PHD fingers has recently been shown to bind non-histone proteins, H3 mimetics, and DNA. In this review, we highlight the molecular mechanisms by which PHD fingers interact with ligands other than the amino terminus of H3 and discuss similarities and differences in engagement with histone and non-histone binding partners.
Collapse
Affiliation(s)
- Nitika Gaurav
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Ortiz G, Kutateladze TG, Fujimori DG. Chemical tools targeting readers of lysine methylation. Curr Opin Chem Biol 2023; 74:102286. [PMID: 36948085 PMCID: PMC10264141 DOI: 10.1016/j.cbpa.2023.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/22/2023]
Abstract
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.
Collapse
Affiliation(s)
- Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Danica Galonic Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Atypical histone targets of PHD fingers. J Biol Chem 2023; 299:104601. [PMID: 36907441 PMCID: PMC10124903 DOI: 10.1016/j.jbc.2023.104601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Plant homeodomain (PHD) fingers are structurally conserved zinc fingers that selectively bind unmodified or methylated at lysine 4 histone H3 tails. This binding stabilizes transcription factors and chromatin-modifying proteins at specific genomic sites, which is required for vital cellular processes, including gene expression and DNA repair. Several PHD fingers have recently been shown to recognize other regions of H3 or histone H4. In this review, we detail molecular mechanisms and structural features of the non-canonical histone recognition, discuss biological implications of the atypical interactions, highlight therapeutic potential of PHD fingers, and compare inhibition strategies.
Collapse
|
11
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
12
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
13
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Zhang D, Yong WH, Movassaghi M, Rodriguez FJ, Yang I, McKeever P, Qian J, Li JY, Mao Q, Newell KL, Green RM, Welsh CT, Heaney AP. Whole Exome Sequencing Identifies PHF14 Mutations in Neurocytoma and Predicts Responsivity to the PDGFR Inhibitor Sunitinib. Biomedicines 2022; 10:2842. [PMID: 36359362 PMCID: PMC9687778 DOI: 10.3390/biomedicines10112842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 07/22/2023] Open
Abstract
Neurocytomas are rare low-grade brain tumors predominantly affecting young adults, but their cellular origin and molecular pathogenesis is largely unknown. We previously reported a sellar neurocytoma that secreted excess arginine vasopressin causing syndrome of inappropriate anti-diuretic hormone (SIADH). Whole exome sequencing in 21 neurocytoma tumor tissues identified somatic mutations in the plant homeodomain finger protein 14 (PHF14) in 3/21 (14%) tumors. Of these mutations, two were missense mutations and 4 caused splicing site losses, resulting in PHF14 dysfunction. Employing shRNA-mediated knockdown and CRISPR/Cas9-based knockout approaches, we demonstrated that loss of PHF14 increased proliferation and colony formation in five different human, mouse and rat mesenchymal and differentiated cell lines. Additionally, we demonstrated that PHF14 depletion resulted in upregulation of platelet derived growth factor receptor-alpha (PDGFRα) mRNA and protein in neuroblastoma SHSY-5Y cells and led to increased sensitivity to treatment with the PDGFR inhibitor Sunitinib. Furthermore, in a neurocytoma primary culture harboring splicing loss PHF14 mutations, overexpression of wild-type PHF14 and sunitinib treatment inhibited cell proliferation. Nude mice, inoculated with PHF14 knockout SHSY-5Y cells developed earlier and larger tumors than control cell-inoculated mice and Sunitinib administration caused greater tumor suppression in mice harboring PHF-14 knockout than control SHSY-5Y cells. Altogether our studies identified mutations of PHF14 in 14% of neurocytomas, demonstrate it can serve as an alternative pathway for certain cancerous behavior, and suggest a potential role for Sunitinib treatment in some patients with residual/recurrent neurocytoma.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fausto J. Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Issac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Paul McKeever
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiang Qian
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Jian Yi Li
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Lake Success, NY 11549, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard M. Green
- Neuro-Oncology Program, Kaiser Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Cynthia T. Welsh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anthony P. Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Yu M, Jia Y, Ma Z, Ji D, Wang C, Liang Y, Zhang Q, Yi H, Zeng L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 2022; 12:906807. [PMID: 36033518 PMCID: PMC9399681 DOI: 10.3389/fonc.2022.906807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.
Collapse
Affiliation(s)
- Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| |
Collapse
|
16
|
A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat Commun 2022; 13:2055. [PMID: 35440626 PMCID: PMC9018702 DOI: 10.1038/s41467-022-29648-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/26/2022] [Indexed: 11/08/2022] Open
Abstract
Changes in ambient temperature influence crop fertility and production. Understanding of how crops sense and respond to temperature is thus crucial for sustainable agriculture. The thermosensitive genic male-sterile (TGMS) lines are widely used for hybrid rice breeding and also provide a good system to investigate the mechanisms underlying temperature sensing and responses in crops. Here, we show that OsMS1 is a histone binding protein, and its natural allele OsMS1wenmin1 confers thermosensitive male sterility in rice. OsMS1 is primarily localized in nuclei, while OsMS1wenmin1 is localized in nuclei and cytoplasm. Temperature regulates the abundances of OsMS1 and OsMS1wenmin1 proteins. The high temperature causes more reduction of OsMS1wenmin1 than OsMS1 in nuclei. OsMS1 associates with the transcription factor TDR to regulate expression of downstream genes in a temperature-dependent manner. Thus, our findings uncover a thermosensitive mechanism that could be useful for hybrid crop breeding.
Collapse
|
17
|
Zhang MY, Yang H, Ortiz G, Trnka MJ, Petronikolou N, Burlingame AL, DeGrado WF, Fujimori DG. Covalent labeling of a chromatin reader domain using proximity-reactive cyclic peptides. Chem Sci 2022; 13:6599-6609. [PMID: 35756531 PMCID: PMC9172573 DOI: 10.1039/d2sc00555g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3—a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3–histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic ‘groove’ of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains. We describe the development of covalent cyclic peptide ligands which target a chromatin methylation reader domain using a proximity-reactive sulfonyl fluoride moiety.![]()
Collapse
Affiliation(s)
- Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Nektaria Petronikolou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
- Quantitative Biosciences Institute, University of California San Francisco San Francisco CA 94158 USA
| |
Collapse
|
18
|
Searching for methyllysine-binding aromatic cages. Biochem J 2021; 478:3613-3619. [PMID: 34624071 DOI: 10.1042/bcj20210106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Methylation of lysine residues plays crucial roles in a wide variety of cell signaling processes. While the biological importance of recognition of methylated histones by reader domains in the cell nucleus is well established, the processes associated with methylation of non-histone proteins, particularly in the cytoplasm of the cell, are not well understood. Here, we describe a search for potential methyllysine readers using a rapid structural motif-mining algorithm Erebus, the PDB database, and knowledge of the methyllysine binding mechanisms.
Collapse
|
19
|
Albanese KI, Waters ML. Contributions of methionine to recognition of trimethyllysine in aromatic cage of PHD domains: implications of polarizability, hydrophobicity, and charge on binding. Chem Sci 2021; 12:8900-8908. [PMID: 34257891 PMCID: PMC8246079 DOI: 10.1039/d1sc02175c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Recognition of trimethyllysine (Kme3) by reader proteins is an important regulator of gene expression. This recognition event is mediated by an aromatic cage made up of 2-4 aromatic residues in the reader proteins that bind Kme3 via cation-π interactions. A small subset of reader proteins contain a methionine (Met) residue in place of an aromatic sidechain in the binding pocket. The unique role of sulfur in molecular recognition has been demonstrated in a number of noncovalent interactions recently, including interactions of thiols, thioethers, and sulfoxides with aromatic rings. However, the interaction of a thioether with an ammonium ion has not previously been investigated and the role of Met in binding Kme3 has not yet been explored. Herein, we systematically vary the Met in two reader proteins, DIDO1 and TAF3, and the ligand, Kme3 or its neutral analog tert-butyl norleucine (tBuNle), to determine the role of Met in the recognition of the cationic Kme3. Our studies demonstrate that Met contributes to binding via dispersion forces, with about an equal contribution to binding Kme3 and tBuNle, indicating that electrostatic interactions do not play a role. During the course of these studies, we also discovered that DIDO1 exhibits equivalent binding to tBuNle and Kme3 through a change in the mechanism of binding.
Collapse
Affiliation(s)
- Katherine I Albanese
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| |
Collapse
|
20
|
Lukinović V, Biggar KK. Deconvoluting complex protein interaction networks through reductionist strategies in peptide biochemistry: Modern approaches and research questions. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110616. [PMID: 34000427 DOI: 10.1016/j.cbpb.2021.110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Following the decoding of the first human genome, researchers have vastly improved their understanding of cell biology and its regulation. As a result, it has become clear that it is not merely genetic information, but the aberrant changes in the functionality and connectivity of its encoded proteins that drive cell response to periods of stress and external cues. Therefore, proper utilization of refined methods that help to describe protein signalling or regulatory networks (i.e., functional connectivity), can help us understand how change in the signalling landscape effects the cell. However, given the vast complexity in 'how and when' proteins communicate or interact with each other, it is extremely difficult to define, characterize, and understand these interaction networks in a tangible manner. Herein lies the challenge of tackling the functional proteome; its regulation is encoded in multiple layers of interaction, chemical modification and cell compartmentalization. To address and refine simple research questions, modern reductionist strategies in protein biochemistry have successfully used peptide-based experiments; their summation helping to simplify the overall complexity of these protein interaction networks. In this way, peptides are powerful tools used in fundamental research that can be readily applied to comparative biochemical research. Understanding and defining how proteins interact is one of the key aspects towards understanding how the proteome functions. To date, reductionist peptide-based research has helped to address a wide range of proteome-related research questions, including the prediction of enzymes substrates, identification of posttranslational modifications, and the annotation of protein interaction partners. Peptide arrays have been used to identify the binding specificity of reader domains, which are able to recognise the posttranslational modifications; forming dynamic protein interactions that are dependent on modification state. Finally, representing one of the fastest growing classes of inhibitor molecules, peptides are now begin explored as "disruptors" of protein-protein interactions or enzyme activity. Collectively, this review will discuss the use of peptides, peptide arrays, peptide-oriented computational biochemistry as modern reductionist strategies in deconvoluting the functional proteome.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
21
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
22
|
In silico derived small molecules targeting the finger-finger interaction between the histone lysine methyltransferase NSD1 and Nizp1 repressor. Comput Struct Biotechnol J 2020; 18:4082-4092. [PMID: 33363704 PMCID: PMC7736721 DOI: 10.1016/j.csbj.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
PHD fingers are small chromatin binding domains, that alone or in tandem work as versatile interaction platforms for diversified activities, ranging from the decoding of the modification status of histone tails to the specific recognition of non-histone proteins. They play a crucial role in their host protein as mutations thereof cause several human malignancies. Thus, PHD fingers are starting to be considered as valuable pharmacological targets. While inhibitors or chemical probes of the histone binding activity of PHD fingers are emerging, their druggability as non-histone interaction platform is still unexplored. In the current study, using a computational and experimental pipeline, we provide proof of concept that the tandem PHD finger of Nuclear receptor-binding SET (Su(var)3–9, Enhancer of zeste, Trithorax) domain protein 1 (PHDVC5HCHNSD1) is ligandable. Combining virtual screening of a small subset of the ZINC database (Zinc Drug Database, ZDD, 2924 molecules) to NMR binding assays and ITC measurements, we have identified Mitoxantrone dihydrochloride, Quinacrine dihydrochloride and Chloroquine diphosphate as the first molecules able to bind to PHDVC5HCHNSD1 and to reduce its documented interaction with the Zinc finger domain (C2HRNizp1) of the transcriptional repressor Nizp1 (NSD1-interacting Zn-finger protein). These results pave the way for the design of small molecules with improved effectiveness in inhibiting this finger-finger interaction.
Collapse
Key Words
- C2HRNizp1, C2HR finger domain of Nizp1
- NMR
- NMR, Nuclear Magnetic Resonance
- NSD1
- NSD1, Nuclear receptor-binding SET (Su(var)3–9, Enhancer of zeste, Trithorax) domain protein 1
- Nizp1
- Nizp1, (NSD1-interacting Zn-finger protein)
- PHD finger
- PHD finger, Plant Homeodomain finger
- PHDVC5HCHNSD1, Fifth PHD and C5HCH tandem domain of NSD1
- Protein-protein interactions
- STD, saturation transfer difference
- VS, Virtual Screening
- Virtual screening
Collapse
|
23
|
Characterization and Stress Response of the JmjC Domain-Containing Histone Demethylase Gene Family in the Allotetraploid Cotton Species Gossypium hirsutum. PLANTS 2020; 9:plants9111617. [PMID: 33233854 PMCID: PMC7709011 DOI: 10.3390/plants9111617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton.
Collapse
|
24
|
Zhao Y, He J, Li Y, Xu M, Peng X, Mao J, Xu B, Cui H. PHF14 Promotes Cell Proliferation and Migration through the AKT and ERK1/2 Pathways in Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6507510. [PMID: 32596345 PMCID: PMC7305535 DOI: 10.1155/2020/6507510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
PHF14 is a new member belonging to PHD finger proteins. PHF14 is involved in multiple biologic processes including Dandy-Walker syndrome, mesenchyme growth, lung fibrosis, renal fibrosis, persistent pulmonary hypertension, and tumor development. This study aims to explore whether PHF14 plays an important role in gastric cancer. Here, PHF14 is indicated as a tumor promoter. The expression of PHF14 enhances no matter in clinical samples or in gastric cancer cells. High expression of PHF14 impairs survival of patients. Attenuation of PHF14 inhibits cell proliferation in gastric cancer cells. PHF14 downregulation inhibits the expression of cell cycle-related proteins, CDK6 and cyclin D1. Furthermore, silencing of PHF14 reduces the level of phosphorylated AKT as well as phosphorylated ERK1/2. Finally, downregulation of PHF14 in gastric cancer cells inhibits colony formation in vitro and tumorigenesis in vivo. These results indicate that PHF14 promotes tumor development in gastric cancer, so PHF14 thereby acts as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xingzhi Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jingxin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bo Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Hospital of Southwest University, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Xu N, Liu F, Wu S, Ye M, Ge H, Zhang M, Song Y, Tong L, Zhou J, Bai C. CHD4 mediates proliferation and migration of non-small cell lung cancer via the RhoA/ROCK pathway by regulating PHF5A. BMC Cancer 2020; 20:262. [PMID: 32228507 PMCID: PMC7106713 DOI: 10.1186/s12885-020-06762-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/17/2020] [Indexed: 12/02/2022] Open
Abstract
Background Chromodomain helicase DNA-binding protein 4 (CHD4) has been shown to contribute to DNA repair and cell cycle promotion; however, its roles in cancer initiation and progression remain largely unknown. This study aimed to demonstrate the role of CHD4 in the development of non-small cell lung cancer (NSCLC) and determine the potential mechanisms of action. Methods By using immunohistochemistry, the expression levels were evaluated in both cancer and non-cancerous tissues. Subsequently, CHD4 knockdown and overexpression strategies were employed to investigate the effects of CHD4 on cell proliferation, migration, along with the growth and formation of tumors in a xenografts mouse model. The protein expression levels of CHD4, PHF5A and ROCK/RhoA markers were determined by Western blot analysis. Results Compared with non-cancerous tissues, CHD4 was overexpressed in cancer tissues and CHD4 expression levels were closely related to clinical parameters of NSCLC patients. In H292 and PC-9 cell lines, CHD4 overexpression could promote the proliferative and migratory potential of NSCLC cells. Furthermore, down-regulation of CHD4 could reduce the proliferative and migratory ability in A549 and H1299 cell lines. Meanwhile, knockdown of CHD4 could decrease the tumorigenicity in nude mice. Finally, we demonstrated that one of the mechanisms underlying the promotive effect of CHD4 on NSCLC proliferation and migration may be through its interaction with PHD finger protein 5A (PHF5A) and subsequent activation of the RhoA/ROCK signaling pathway. Conclusions CHD4, which is highly expressed in cancer tissue, could be an independent prognostic factor for NSCLC patients. CHD4 plays an important role in regulating the proliferative and migratory abilities of NSCLC via likely the RhoA/ROCK pathway by regulating PHF5A.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fanglei Liu
- Department of Pulmonary Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Shengdi Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Maosong Ye
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Haiyan Ge
- Department of Pulmonary Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Meiling Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Heme, A Metabolic Sensor, Directly Regulates the Activity of the KDM4 Histone Demethylase Family and Their Interactions with Partner Proteins. Cells 2020; 9:cells9030773. [PMID: 32235736 PMCID: PMC7140707 DOI: 10.3390/cells9030773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
The KDM4 histone demethylase subfamily is constituted of yeast JmjC domain-containing proteins, such as Gis1, and human Gis1 orthologues, such as KDM4A/B/C. KDM4 proteins have important functions in regulating chromatin structure and gene expression in response to metabolic and nutritional stimuli. Heme acts as a versatile signaling molecule to regulate important cellular functions in diverse organisms ranging from bacteria to humans. Here, using purified KDM4 proteins containing the JmjN/C domain, we showed that heme stimulates the histone demethylase activity of the JmjN/C domains of KDM4A and Cas well as full-length Gis1. Furthermore, we found that the C-terminal regions of KDM4 proteins, like that of Gis1, can confer heme regulation when fused to an unrelated transcriptional activator. Interestingly, biochemical pull-down of Gis1-interacting proteins followed by mass spectrometry identified 147 unique proteins associated with Gis1 under heme-sufficient and/or heme-deficient conditions. These 147 proteins included a significant number of heterocyclic compound-binding proteins, Ubl-conjugated proteins, metabolic enzymes/proteins, and acetylated proteins. These results suggested that KDM4s interact with diverse cellular proteins to form a complex network to sense metabolic and nutritional conditions like heme levels and respond by altering their interactions with other proteins and functional activities, such as histone demethylation.
Collapse
|
27
|
Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC Genomics 2019; 20:773. [PMID: 31651238 PMCID: PMC6814106 DOI: 10.1186/s12864-019-6080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an "epigenome reader", and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. RESULTS We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. CONCLUSIONS Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.
Collapse
Affiliation(s)
- Intikhab Alam
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cui-Cui Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong-Liu Ge
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan-Qing Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun-Hai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
28
|
Viryasova GM, Tatarskiy VV, Sheynov AA, Tatarskiy EV, Sud'ina GF, Georgieva SG, Soshnikova NV. PBAF lacking PHD domains maintains transcription in human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118525. [PMID: 31398409 DOI: 10.1016/j.bbamcr.2019.118525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022]
Abstract
The myeloid precursor cell differentiation requires an extensive chromatin remodeling. We show that the level of the PBAF chromatin remodeling complex decreases following the start of differentiation of myeloid precursors, becoming very low in the terminally differentiated peripheral blood (PB) neutrophils where it co-localizes with Pol II on the transcriptionally active chromatin. Previously, we have shown that the PHF10 subunit of the PBAF signature module has four isoforms, two of them (PHF10-P) contain a tandem of C-terminal PHD domains. We found that out of four PHF10 isoforms present in the myeloid precursor cells, only the PHF10-Ss isoform lacking PHD domains, is actively expressed in the PB neutrophils. In particular, the longest of the PHF10 isoforms (PHF10-Pl), which is essential for proliferation, completely disappears in PB neutrophils. In addition, in the myeloid precursors, promoters of neutrophil-specific genes are associated with the PHD-containing isoforms, together with PBAF and Pol II, when these genes are inactive and only during their activation stage. However, at the later stages of differentiation, when neutrophil-specific genes are actively transcribed, PHF10-P isoforms on their promoters are replaced by the PHF10-S isoforms. Evidently, PHD domains of PHF10 are essential for active chromatin remodeling during transcription activation, but are dispensable for the constantly transcribed genes.
Collapse
Affiliation(s)
- Galina M Viryasova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia; The A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1, Building 40, Moscow 119992, Russia
| | - Victor V Tatarskiy
- Department of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Andrey A Sheynov
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Eugene V Tatarskiy
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Galina F Sud'ina
- The A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1, Building 40, Moscow 119992, Russia
| | - Sofia G Georgieva
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia.
| | - Nataliya V Soshnikova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia.
| |
Collapse
|
29
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
30
|
Mirzakhani H, Al-Garawi AA, Carey VJ, Qiu W, Litonjua AA, Weiss ST. Expression network analysis reveals cord blood vitamin D-associated genes affecting risk of early life wheeze. Thorax 2019; 74:200-202. [PMID: 30021811 PMCID: PMC11293338 DOI: 10.1136/thoraxjnl-2018-211962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/03/2022]
Abstract
Cord blood 25-hydroxyvitamin D (25OHD) has been reported in association with risk of early life recurrent wheeze. In a subset of infants who participated in the Vitamin D Antenatal Asthma Reduction Trial, we demonstrated that higher cord blood 25OHD at birth (>31 ng/mL) was associated with a reduced risk of recurrent wheeze in the first year of life. We then identified a module of co-expressed genes associated with cord blood 25OHD levels >31 ng/mL. Genes in this module are involved in biological and immune pathways related to development and progression of asthma pathogenesis including the Notch1 and transforming growth factor-beta signalling pathways.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amal A Al-Garawi
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of constrained coding regions in the human genome. Nat Genet 2018; 51:88-95. [PMID: 30531870 DOI: 10.1038/s41588-018-0294-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Deep catalogs of genetic variation from thousands of humans enable the detection of intraspecies constraint by identifying coding regions with a scarcity of variation. While existing techniques summarize constraint for entire genes, single gene-wide metrics conceal regional constraint variability within each gene. Therefore, we have created a detailed map of constrained coding regions (CCRs) by leveraging variation observed among 123,136 humans from the Genome Aggregation Database. The most constrained CCRs are enriched for pathogenic variants in ClinVar and mutations underlying developmental disorders. CCRs highlight protein domain families under high constraint and suggest unannotated or incomplete protein domains. The highest-percentile CCRs complement existing variant prioritization methods when evaluating de novo mutations in studies of autosomal dominant disease. Finally, we identify highly constrained CCRs within genes lacking known disease associations. This observation suggests that CCRs may identify regions under strong purifying selection that, when mutated, cause severe developmental phenotypes or embryonic lethality.
Collapse
Affiliation(s)
- James M Havrilla
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA. .,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
32
|
Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am J Transl Res 2018; 10:2222-2233. [PMID: 30210666 PMCID: PMC6129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The discovery of histone demethylases has revealed the dynamic nature of the regulation of histone methylation. KDM2B is an important histone lysine demethylase that removes methyl from H3K36me2 and H3K4me3. It participates in many aspects of normal cellular processes such as cell senescence, cell differentiation and stem cell self-renewal. Recent studies also showed that KDM2B was overexpressed in various types of cancers. This review focuses primarily on the current knowledge of KDM2B and its function in cancer development.
Collapse
Affiliation(s)
- Meina Yan
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Xinxin Yang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
33
|
Combined HAT/EZH2 modulation leads to cancer-selective cell death. Oncotarget 2018; 9:25630-25646. [PMID: 29876013 PMCID: PMC5986654 DOI: 10.18632/oncotarget.25428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic alterations have been associated with both pathogenesis and progression of cancer. By screening of library compounds, we identified a novel hybrid epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft models. Anticancer action was due to an epigenome modulation by H3K27me3, H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, and strong down-regulation of BCL2. Even aggressive models of cancer, such as p53-/- or TET2-/- cells, responded to MC2884, suggesting MC2884 therapeutic potential also for the therapy of TP53 or TET2-deficient human cancers. MC2884 induced massive apoptosis in ex vivo human primary leukemia blasts with poor prognosis in vivo, by targeting BCL2 expression. MC2884-treatment reduced acetylation of the BCL2 promoter at higher level than combined p300 and EZH2 inhibition. This suggests a key role for BCL-2 reduction in potentiating responsiveness, also in combination therapy with BCL2 inhibitors. Finally, we identified both the mechanism of MC2884 action as well as a potential therapeutic scheme of its use. Altogether, this provides proof of concept for the use of epi-drugs coupled with epigenome analyses to 'personalize' precision medicine.
Collapse
|
34
|
Amato A, Lucas X, Bortoluzzi A, Wright D, Ciulli A. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach. ACS Chem Biol 2018. [PMID: 29529862 PMCID: PMC5913730 DOI: 10.1021/acschembio.7b01093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.
Collapse
Affiliation(s)
- Anastasia Amato
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Xavier Lucas
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Bortoluzzi
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David Wright
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
35
|
Plant Homeodomain Genes Play Important Roles in Cryptococcal Yeast-Hypha Transition. Appl Environ Microbiol 2018; 84:AEM.01732-17. [PMID: 29500261 DOI: 10.1128/aem.01732-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/19/2018] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is a major opportunistic fungal pathogen. Like many dimorphic fungal pathogens, C. neoformans can undergo morphological transition from the yeast form to the hypha form, and its morphotype is tightly linked to its virulence. Although some genetic factors controlling morphogenesis have been identified, little is known about the epigenetic regulation in this process. Proteins with the plant homeodomain (PHD) finger, a structurally conserved domain in eukaryotes, were first identified in plants and are known to be involved in reading and effecting chromatin modification. Here, we investigated the role of the PHD finger family genes in Cryptococcus mating and yeast-hypha transition. We found 16 PHD finger domains distributed among 15 genes in the Cryptococcus genome, with two genes, ZNF1α and RUM1α, located in the mating type locus. We deleted these 15 PHD genes and examined the impact of their disruption on cryptococcal morphogenesis. The deletion of five PHD finger genes dramatically affected filamentation. The rum1αΔ and znf1αΔ mutants showed enhanced ability to initiate filamentation but impaired ability to maintain filamentous growth. The bye1Δ and the phd11Δ mutants exhibited enhanced filamentation, while the set302Δ mutants displayed reduced filamentation. Ectopic overexpression of these five genes in the corresponding null mutants partially or completely restored the defect in filamentation. Furthermore, we demonstrated that Phd11, a suppressor of filamentation, regulates the yeast-hypha transition through the known master regulator Znf2. The findings indicate the importance of epigenetic regulation in controlling dimorphic transition in C. neoformansIMPORTANCE Morphotype is known to have a profound impact on cryptococcal interaction with various hosts, including mammalian hosts. The yeast form of Cryptococcus neoformans is considered the virulent form, while its hyphal form is attenuated in mammalian models of cryptococcosis. Although some genetic regulators critical for cryptococcal morphogenesis have been identified, little is known about epigenetic regulation in this process. Given that plant homeodomain (PHD) finger proteins are involved in reading and effecting chromatin modification and their functions are unexplored in C. neoformans, we investigated the roles of the 15 PHD finger genes in Cryptococcus mating and yeast-hypha transition. Five of them profoundly affect filamentation as either a suppressor or an activator. Phd11, a suppressor of filamentation, regulates this process via Znf2, a known master regulator of morphogenesis. Thus, epigenetic regulation, coupled with genetic regulation, controls this yeast-hypha transition event.
Collapse
|
36
|
Lu W, Zhang R, Jiang H, Zhang H, Luo C. Computer-Aided Drug Design in Epigenetics. Front Chem 2018; 6:57. [PMID: 29594101 PMCID: PMC5857607 DOI: 10.3389/fchem.2018.00057] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.
Collapse
Affiliation(s)
- Wenchao Lu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Rukang Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Lee D, Park JH, Kim S, Lee SG, Myung K. SHPRH as a new player in ribosomal RNA transcription and its potential role in homeostasis of ribosomal DNA repeats. Transcription 2017; 9:190-195. [PMID: 29139335 DOI: 10.1080/21541264.2017.1381795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
There are hundreds of copies of rDNA repeats in mammalian chromosomes and the ratio of active, poised, or inactive rDNA is regulated in epigenetic manners. Recent studies demonstrated that a post-DNA replication repair enzyme, SHPRH affects rRNA transcription by recognizing epigenetic markers on rDNA promoters and unveiled potential links between DNA repair and ribosome biogenesis. This study suggests that SHPRH could be a link between mTOR-mediated epigenetic regulations and rRNA transcription, while concomitantly affecting genomic integrity.
Collapse
Affiliation(s)
- Deokjae Lee
- a Medytox Inc. 114 , Yeongtong-gu , Suwon-si , Gyeonggi-do , Korea
| | - Jun Hong Park
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Shinseog Kim
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Seon-Gyeong Lee
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| | - Kyungjae Myung
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| |
Collapse
|
38
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
39
|
Zhang X, Novera W, Zhang Y, Deng LW. MLL5 (KMT2E): structure, function, and clinical relevance. Cell Mol Life Sci 2017; 74:2333-2344. [PMID: 28188343 PMCID: PMC11107642 DOI: 10.1007/s00018-017-2470-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The mixed lineage leukemia (MLL) family of genes, also known as the lysine N-methyltransferase 2 (KMT2) family, are homologous to the evolutionarily conserved trithorax group that plays critical roles in the regulation of homeotic gene (HOX) expression and embryonic development. MLL5, assigned as KMT2E on the basis of its SET domain homology, was initially categorized under MLL (KMT2) family together with other six SET methyltransferase domain proteins (KMT2A-2D and 2F-2G). However, emerging evidence suggests that MLL5 is distinct from the other MLL (KMT2) family members, and the protein it encodes appears to lack intrinsic histone methyltransferase (HMT) activity towards histone substrates. MLL5 has been reported to play key roles in diverse biological processes, including cell cycle progression, genomic stability maintenance, adult hematopoiesis, and spermatogenesis. Recent studies of MLL5 variants and isoforms and putative MLL5 homologs in other species have enriched our understanding of the role of MLL5 in gene expression regulation, although the mechanism of action and physiological function of MLL5 remains poorly understood. In this review, we summarize recent research characterizing the structural features and biological roles of MLL5, and we highlight the potential implications of MLL5 dysfunction in human disease.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore
| | - Wisna Novera
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore.
- National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
40
|
Drug Target Protein-Protein Interaction Networks: A Systematic Perspective. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1289259. [PMID: 28691014 PMCID: PMC5485489 DOI: 10.1155/2017/1289259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/09/2017] [Accepted: 05/10/2017] [Indexed: 01/17/2023]
Abstract
The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target's homologue set containing 102 potential target proteins is predicted in the paper.
Collapse
|
41
|
Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains. Biochem J 2017; 474:1633-1651. [PMID: 28341809 PMCID: PMC5415848 DOI: 10.1042/bcj20161053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post-translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD finger of the bromodomain adjacent to zinc finger 2A [BAZ2A, also known as TIP5 (TTF-I/interacting protein 5)] in complex with unmodified N-terminal histone H3 tail. The peptide is bound in a helical folded-back conformation after K4, induced by an acidic patch on the protein surface that prevents peptide binding in an extended conformation. Structural bioinformatics analyses identify a conserved Asp/Glu residue that we name ‘acidic wall’, found to be mutually exclusive with the conserved Trp for K4Me recognition. Neutralization or inversion of the charges at the acidic wall patch in BAZ2A, and homologous BAZ2B, weakened H3 binding. We identify simple mutations on H3 that strikingly enhance or reduce binding, as a result of their stabilization or destabilization of H3 helicity. Our work unravels the structural basis for binding of the helical H3 tail by PHD fingers and suggests that molecular recognition of secondary structure motifs within histone tails could represent an additional layer of regulation in epigenetic processes.
Collapse
|
42
|
SHPRH regulates rRNA transcription by recognizing the histone code in an mTOR-dependent manner. Proc Natl Acad Sci U S A 2017; 114:E3424-E3433. [PMID: 28400511 DOI: 10.1073/pnas.1701978114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many DNA repair proteins have additional functions other than their roles in DNA repair. In addition to catalyzing PCNA polyubiquitylation in response to the stalling of DNA replication, SHPRH has the additional function of facilitating rRNA transcription by localizing to the ribosomal DNA (rDNA) promoter in the nucleoli. SHPRH was recruited to the rDNA promoter using its plant homeodomain (PHD), which interacts with histone H3 when the fourth lysine of H3 is not trimethylated. SHPRH enrichment at the rDNA promoter was inhibited by cell starvation, by treatment with actinomycin D or rapamycin, or by depletion of CHD4. SHPRH also physically interacted with the RNA polymerase I complex. Taken together, we provide evidence that SHPRH functions in rRNA transcription through its interaction with histone H3 in a mammalian target of rapamycin (mTOR)-dependent manner.
Collapse
|
43
|
Krasteva V, Crabtree GR, Lessard JA. The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp Hematol 2017; 48:58-71.e15. [PMID: 27931852 PMCID: PMC11975438 DOI: 10.1016/j.exphem.2016.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/12/2016] [Accepted: 11/25/2016] [Indexed: 11/22/2022]
Abstract
The ability of hemopoietic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that establish and maintain stage-specific patterns of gene expression. However, the epigenetic factors responsible for mediating these regulatory events remain poorly defined. Here we provide evidence that BAF45a/PHF10, a subunit of SWI/SNF-like chromatin remodeling complexes, is essential for adult hemopoietic stem cell maintenance and myeloid lineage development. Deletion of BAF45a in the mouse is embryonic lethal. Acute deletion of BAF45a in the adult hemopoietic system causes a dose-dependent decrease in the frequency of long-term repopulating hemopoietic stem cells and committed myeloid progenitors without affecting their rate of proliferation. BAF45a-deficient hemopoietic stem cells and myeloid progenitors are selectively lost from mixed bone marrow chimeras, indicating their impaired function even in an intact microenvironment. Together, these studies suggest that the BAF45a subunit of SWI/SNF-like chromatin remodeling complexes plays nonredundant and specialized roles within the developing hemopoietic tissue.
Collapse
Affiliation(s)
- Veneta Krasteva
- IRIC, Institute for Research in Immunology and Cancer, Montreal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, CA; Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Julie A Lessard
- IRIC, Institute for Research in Immunology and Cancer, Montreal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
44
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|
45
|
Chung HR, Xu C, Fuchs A, Mund A, Lange M, Staege H, Schubert T, Bian C, Dunkel I, Eberharter A, Regnard C, Klinker H, Meierhofer D, Cozzuto L, Winterpacht A, Di Croce L, Min J, Will H, Kinkley S. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3. eLife 2016; 5. [PMID: 27223324 PMCID: PMC4915813 DOI: 10.7554/elife.10607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 05/19/2016] [Indexed: 02/04/2023] Open
Abstract
PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes. DOI:http://dx.doi.org/10.7554/eLife.10607.001 In human and other eukaryotic cells, DNA is packaged around proteins called histones to form a structure known as chromatin. Chemical tags added to the histones alter how the DNA is packaged and the activity of the genes encoded by that DNA. For example, many active genes are packaged around histone H3 proteins that have “Lysine 4 tri-methyl” tags attached to them. Another protein that is associated with chromatin is called PHF13 and it has several roles, including repairing damaged DNA. However, it was not known whether PHF13 binds to chromatin via the chemical tags, or in another way. Ho-Ryun, Xu, Fuchs et al. used several biochemical techniques in mouse and human cells to explore how PHF13 specifically interacts with chromatin. These experiments showed that PHF13 binds specifically to DNA and to two types of methyl tags (lysine 4-tri-methyl or lysine 4-di-methyl). These chemical tags are predominantly found at active promoters as well as at a small subset of less active promoters known as bivalent promoters. PHF13 interacted with other proteins on the chromatin that are known to either drive or repress gene activity and it’s depletion affected the activity of many genes. Whether PHF13 increased or decreased gene activity depended on whether it was bound to active or bivalent promoters. The active promoters targeted by PHF13 had higher numbers of the tri-methyl tags whereas the di-methyl tags were more common on the bivalent promoters. These findings provide preliminary evidence that a protein binding to different methyl tags in the same place on histone H3 can have opposite effects on gene activity. Ho-Ryun, Xu, Fuchs et al. now intend to find out more about the other proteins that interact with PHF13 on chromatin. DOI:http://dx.doi.org/10.7554/eLife.10607.002
Collapse
Affiliation(s)
- Ho-Ryun Chung
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chao Xu
- Structural Genomics Consortium, Toronto, Canada
| | - Alisa Fuchs
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mund
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Hannah Staege
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Schubert
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Ilona Dunkel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anton Eberharter
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | - Catherine Regnard
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | - Henrike Klinker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | | | - Luca Cozzuto
- Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andreas Winterpacht
- Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luciano Di Croce
- Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, Barcelona, Spain
| | - Jinrong Min
- Structural Genomics Consortium, Toronto, Canada
| | - Hans Will
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sarah Kinkley
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
46
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
47
|
Dickinson AJG. Using frogs faces to dissect the mechanisms underlying human orofacial defects. Semin Cell Dev Biol 2016; 51:54-63. [PMID: 26778163 DOI: 10.1016/j.semcdb.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
In this review I discuss how Xenopus laevis is an effective model to dissect the mechanisms underlying orofacial defects. This species has been particularly useful in studying the understudied structures of the developing face including the embryonic mouth and primary palate. The embryonic mouth is the first opening between the foregut and the environment and is critical for adult mouth development. The final step in embryonic mouth formation is the perforation of a thin layer of tissue covering the digestive tube called the buccopharyngeal membrane. When this tissue does not perforate in humans it can pose serious health risks for the fetus and child. The primary palate forms just dorsal to the embryonic mouth and in non-amniotes it functions as the roof of the adult mouth. Defects in the primary palate result in a median oral cleft that appears similar across the vertebrates. In humans, these median clefts are often severe and surgically difficult to repair. Xenopus has several qualities that make it advantageous for craniofacial research. The free living embryo has an easily accessible face and we have also developed several new tools to analyze the development of the region. Further, Xenopus is readily amenable to chemical screens allowing us to uncover novel gene-environment interactions during orofacial development, as well as to define underlying mechanisms governing such interactions. In conclusion, we are utilizing Xenopus in new and innovative ways to contribute to craniofacial research.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Main St., Richmond, VA 23284, United States.
| |
Collapse
|
48
|
Wang Z, Hu J, Li G, Qu L, He Q, Lou Y, Song Q, Ma D, Chen Y. PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1. Autophagy 2015; 10:2158-70. [PMID: 25484098 DOI: 10.4161/auto.36439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a multistep process that involves the degradation and digestion of intracellular components by the lysosome. It has been proved that many core autophagy-related molecules participate in this event. However, new component proteins that regulate autophagy are still being discovered. At present, we report PHF23 (PHD finger protein 23) with a PHD-like zinc finger domain that can negatively regulate autophagy. Data from experiments indicated that the overexpression of PHF23 impaired autophagy, as characterized by decreased levels of LC3B-II and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, knockdown of PHF23 resulted in opposite effects. Molecular mechanism studies suggested that PHF23 interacts with LRSAM1, which is an E3 ligase key for ubiquitin-dependent autophagy against invading bacteria. PHF23 promotes the ubiquitination and proteasome degradation of LRSAM1. We also show that the PHD finger of PHF23 is a functional domain needed for the interaction with LRSAM1. Altogether, our results indicate that PHF23 is a negative regulator associated in autophagy via the LRSAM1 signaling pathway. The physical and functional connection between the PHF23 and LRSAM1 needs further investigation.
Collapse
Key Words
- AML, acute myeloid leukemia
- ATG, autophagy-related
- BafA1, bafilomycin A1
- CALCOCO2, calcium binding and coiled-coil domain 2
- CQ, chloroquine
- EBSS, Earle's balanced salt solution
- FBS, fetal bovine serum
- GFP, green fluorescent protein
- GST, glutathione S-transferase
- IP, immunoprecipitation
- LRSAM1
- LRSAM1, leucine rich repeat and sterile α motif containing 1
- MAP1LC3B/LC3B
- PHD domain
- PHD, plant homeodomain
- PHF23
- PHF23, PHD finger protein 23
- PIK3C3, phosphatidylinositol 3-kinase, catalytic subunit type 3
- SQSTM1, sequestosome 1
- Three-MA, 3-methyladenine
- autophagy
- microtubule-associated protein 1 light chain 3 β
- ubiquitination
Collapse
Affiliation(s)
- Zhenda Wang
- a Key Laboratory of Medical Immunology; Ministry of Health ; Peking University Health Science Center ; Beijing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ali M, Daze KD, Strongin DE, Rothbart SB, Rincon-Arano H, Allen HF, Li J, Strahl BD, Hof F, Kutateladze TG. Molecular Insights into Inhibition of the Methylated Histone-Plant Homeodomain Complexes by Calixarenes. J Biol Chem 2015; 290:22919-30. [PMID: 26229108 DOI: 10.1074/jbc.m115.669333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Plant homeodomain (PHD) finger-containing proteins are implicated in fundamental biological processes, including transcriptional activation and repression, DNA damage repair, cell differentiation, and survival. The PHD finger functions as an epigenetic reader that binds to posttranslationally modified or unmodified histone H3 tails, recruiting catalytic writers and erasers and other components of the epigenetic machinery to chromatin. Despite the critical role of the histone-PHD interaction in normal and pathological processes, selective inhibitors of this association have not been well developed. Here we demonstrate that macrocyclic calixarenes can disrupt binding of PHD fingers to methylated lysine 4 of histone H3 in vitro and in vivo. The inhibitory activity relies on differences in binding affinities of the PHD fingers for H3K4me and the methylation state of the histone ligand, whereas the composition of the aromatic H3K4me-binding site of the PHD fingers appears to have no effect. Our approach provides a novel tool for studying the biological roles of methyllysine readers in epigenetic signaling.
Collapse
Affiliation(s)
- Muzaffar Ali
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kevin D Daze
- the Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Daniel E Strongin
- the Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Hector Rincon-Arano
- the Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Hillary F Allen
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Janessa Li
- the Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Brian D Strahl
- the Department of Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Fraser Hof
- the Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada,
| | - Tatiana G Kutateladze
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045,
| |
Collapse
|
50
|
Kato A, Komatsu K. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair. Genes (Basel) 2015; 6:592-606. [PMID: 26184323 PMCID: PMC4584319 DOI: 10.3390/genes6030592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/25/2023] Open
Abstract
Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.
Collapse
Affiliation(s)
- Akihiro Kato
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|