1
|
Otero-Luis I, Martínez-Rodrigo A, Cavero-Redondo I, Moreno-Herráiz N, López-López S, Saz-Lara A. Comparative effect of oral drugs in improving spasticity of different etiology: a network meta-analysis. Postgrad Med J 2025; 101:212-218. [PMID: 39348794 DOI: 10.1093/postmj/qgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Spasticity, a prevalent manifestation of various neurological conditions, significantly impacts the quality of life of patients. Research on the effects of oral drugs on spasticity has produced controversial results. Thus, the aim of this network meta-analysis was to compare the efficacy of oral drugs for improving spasticity in patients with different etiologies. METHODS We searched four different databases from their inception to 30 November 2023. A network meta-analysis using a frequentist perspective was conducted to assess the effects of different oral drugs on spasticity, evaluated by the modified Ashworth scale. RESULTS Our findings showed that, in a frequentist network meta-analysis, eperisone, diazepam, and baclofen had significantly greater spasticity, as measured by the modified Ashworth scale, than did the placebo (MD: -0.80; 95% CIs: -1.42, -0.18; MD: -0.68; 95% CIs: -1.28, -0.09; MD: -0.58; 95% CIs: -1.11, -0.06, respectively). CONCLUSION In summary, our study confirmed that eperisone, diazepam, and baclofen could be effective approaches for reducing spasticity of different etiologies and could be useful approaches for improving patient quality of life. Key messages What is already known on this topic: The impact of oral drugs, such as baclofen, gabapentin, tizanidine, and dantrolene, in the treatment of spasticity has been documented. What this study adds: This study determines which of the oral drugs aimed at treating spasticity is the most effective across different etiologies. How this study might affect research, practice, or policy: This study suggests tailored treatment strategies for spasticity based on its etiology.
Collapse
Affiliation(s)
- Iris Otero-Luis
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain
| | | | - Iván Cavero-Redondo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nerea Moreno-Herráiz
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain
| | - Samuel López-López
- Castilla-La Mancha Health Services, SESCAM, Hospital of Cuenca, C/Hermandad de Donantes de Sangre, 1, 16002, Cuenca, Spain
| | - Alicia Saz-Lara
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain
| |
Collapse
|
2
|
Nors JW, Endres Z, Goldschen-Ohm MP. GABA A receptor subunit M2-M3 linkers have asymmetric roles in pore gating and diazepam modulation. Biophys J 2024; 123:2085-2096. [PMID: 38400541 PMCID: PMC11309982 DOI: 10.1016/j.bpj.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
GABAA receptors (GABAARs) are neurotransmitter-gated ion channels critical for inhibitory synaptic transmission as well as the molecular target for benzodiazepines (BZDs), one of the most widely prescribed class of psychotropic drugs today. Despite structural insight into the conformations underlying functional channel states, the detailed molecular interactions involved in conformational transitions and the physical basis for their modulation by BZDs are not fully understood. We previously identified that alanine substitution at the central residue in the α1 subunit M2-M3 linker (V279A) enhances the efficiency of linkage between the BZD site and the pore gate. Here, we expand on this work by investigating the effect of alanine substitutions at the analogous positions in the M2-M3 linkers of β2 (I275A) and γ2 (V290A) subunits, which together with α1 comprise typical heteromeric α1β2γ2 synaptic GABAARs. We find that these mutations confer subunit-specific effects on the intrinsic pore closed-open equilibrium and its modulation by the BZD diazepam (DZ). The mutations α1(V279A) or γ2(V290A) bias the channel toward a closed conformation, whereas β2(I275A) biases the channel toward an open conformation to the extent that the channel becomes leaky and opens spontaneously in the absence of agonist. In contrast, only α1(V279A) enhances the efficiency of DZ-to-pore linkage, whereas mutations in the other two subunits have no effect. These observations show that the central residue in the M2-M3 linkers of distinct subunits in synaptic α1β2γ2 GABAARs contribute asymmetrically to the intrinsic closed-open equilibrium and its modulation by DZ.
Collapse
Affiliation(s)
- Joseph W Nors
- Department of Neuroscience, University of Texas at Austin, Austin, Texas; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California
| | - Zachary Endres
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
3
|
Goldschen-Ohm MP. Benzodiazepine Modulation of GABA A Receptors: A Mechanistic Perspective. Biomolecules 2022; 12:1784. [PMID: 36551212 PMCID: PMC9775625 DOI: 10.3390/biom12121784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that target GABAA receptors (GABAARs) to tune inhibitory synaptic signaling throughout the central nervous system. Despite knowing their molecular target for over 40 years, we still do not fully understand the mechanism of modulation at the level of the channel protein. Nonetheless, functional studies, together with recent cryo-EM structures of GABAA(α1)2(βX)2(γ2)1 receptors in complex with BZDs, provide a wealth of information to aid in addressing this gap in knowledge. Here, mechanistic interpretations of functional and structural evidence for the action of BZDs at GABAA(α1)2(βX)2(γ2)1 receptors are reviewed. The goal is not to describe each of the many studies that are relevant to this discussion nor to dissect in detail all the effects of individual mutations or perturbations but rather to highlight general mechanistic principles in the context of recent structural information.
Collapse
|
4
|
Kim JJ, Hibbs RE. Direct Structural Insights into GABA A Receptor Pharmacology. Trends Biochem Sci 2021; 46:502-517. [PMID: 33674151 DOI: 10.1016/j.tibs.2021.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
GABAA receptors are pentameric ligand-gated ion channels that mediate most fast neuronal inhibition in the brain. In addition to their important physiological roles, they are noteworthy in their rich pharmacology; prominent drugs used for anxiety, insomnia, and general anesthesia act through positive modulation of GABAA receptors. Direct structural information for how these drugs work was absent until recently. Efforts in structural biology over the past few years have revealed how important drug classes and natural products interact with the GABAA receptor, providing a foundation for studies in dynamics and structure-guided drug design. Here, we review recent developments in GABAA receptor structural pharmacology, focusing on subunit assemblies of the receptor found at synapses.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
6
|
Payghan PV, Nath Roy S, Bhattacharyya D, Ghoshal N. Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): A computational study revealing the structural basis of selectivity. J Biomol Struct Dyn 2019; 37:3065-3080. [DOI: 10.1080/07391102.2018.1508367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. Computational Studies for Structure-Based Drug Designing Against Transmembrane Receptors: pLGICs and Class A GPCRs. FRONTIERS IN PHYSICS 2018; 6. [DOI: 10.3389/fphy.2018.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci 2018; 39:659-671. [DOI: 10.1016/j.tips.2018.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
|
9
|
Beltrán González AN, Pomata PE, Goutman JD, Gasulla J, Chebib M, Calvo DJ. Benzodiazepine modulation of homomeric GABAAρ1 receptors: differential effects of diazepam and 4'-chlorodiazepam. Eur J Pharmacol 2014; 743:24-30. [PMID: 25246015 DOI: 10.1016/j.ejphar.2014.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand-gated ion channels that mediate inhibitory neurotransmission in the central nervous system (CNS). They are members of the Cys-loop receptor family and display marked structural and functional heterogeneity. Many GABA(A)Rs receptor subtypes are allosterically modulated by benzodiazepines (BDZs), which are drugs extensively used as anxiolytics, sedative-hypnotics and anticonvulsants. One high-affinity site and at least three additional low-affinity sites for BDZ recognition have been identified in several heteromeric and homomeric variants of the GABA(A)Rs (e.g.: α1β2γ2, α1β2/3, β3, etc.). However, the modulation of homomeric GABA(A)ρRs by BDZs was not previously revealed, and these receptors, for a long a time, were assumed to be fully insensitive to the actions of these drugs. In the present study, human homomeric GABA(A)ρ1 receptors were expressed in Xenopus oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of BDZs. GABA(A)ρ1 receptor-mediated responses were modulated by diazepam and 4'-chlorodiazepam in the micromolar range, in a concentration-dependent, voltage-independent and reversible manner. Diazepam produced potentiating effects on GABA-evoked Cl(-) currents and 4'-Cl diazepam induced biphasic effects depending on the GABA concentration, whereas Ro15-4513 and alprazolam were negative modulators. BDZ actions were insensitive to flumazenil. Other BDZs showed negligible activity at equivalent experimental conditions. Our results suggest that GABA(A)ρ1 receptor function can be selectively and differentially modulated by BDZs.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Pablo E Pomata
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Juan D Goutman
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Javier Gasulla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Mary Chebib
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina.
| |
Collapse
|
10
|
Shu HJ, Bracamontes J, Taylor A, Wu K, Eaton MM, Akk G, Manion B, Evers AS, Krishnan K, Covey DF, Zorumski CF, Steinbach JH, Mennerick S. Characteristics of concatemeric GABA(A) receptors containing α4/δ subunits expressed in Xenopus oocytes. Br J Pharmacol 2012; 165:2228-43. [PMID: 21950777 DOI: 10.1111/j.1476-5381.2011.01690.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE GABA(A) receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABA(A) receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 -α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn(2+) . We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gielen MC, Lumb MJ, Smart TG. Benzodiazepines modulate GABAA receptors by regulating the preactivation step after GABA binding. J Neurosci 2012; 32:5707-15. [PMID: 22539833 PMCID: PMC6703631 DOI: 10.1523/jneurosci.5663-11.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/21/2011] [Accepted: 01/01/2012] [Indexed: 11/21/2022] Open
Abstract
GABA(A) receptors (GABA(A)Rs) composed of αβγ subunits are allosterically modulated by the benzodiazepines (BDZs). Agonists at the BDZ binding site potentiate submaximal GABA responses by increasing the apparent affinity of GABA(A)Rs for GABA. Although BDZs were initially thought to affect the binding of GABA agonists, recent studies suggest an effect on receptor gating; however, the involvement of preactivation steps in the modulation by BDZs has not been considered. Consequently, we examined whether BDZ agonists could exert their modulatory effect by displacing the equilibrium between resting and preactivated states of recombinant α1β2γ2 GABA(A)Rs expressed in Xenopus oocytes. For GABA and the partial agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol and piperidine-4-sulfonic acid, we examined BDZ modulation using a simple three-step model incorporating agonist binding, receptor preactivation, and channel opening. The model accounted for diazepam modulation simply by increasing the preactivation constant by approximately fourfold. To assess whether BDZs preferentially affected a specific GABA binding site, pentameric concatamers were used. This demonstrated that single GABA-binding site mutant receptors were equally sensitive to modulation by BDZs compared with wild-type counterparts. Overall, our results suggest that BDZs affect the preactivation step to cause a global conformational rearrangement of GABA(A)Rs, thereby modulating receptor function.
Collapse
Affiliation(s)
- Marc C Gielen
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
12
|
Use of concatemers of ligand-gated ion channel subunits to study mechanisms of steroid potentiation. Anesthesiology 2012; 115:1328-37. [PMID: 21926904 DOI: 10.1097/aln.0b013e318233046a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synaptic receptors of the nicotinic receptor gene family are pentamers of subunits. This modular structure creates problems in studies of drug actions, related to the number of copies of a subunit that are present and their position. A separate issue concerns the mechanism of action of many anesthetics, which involves potentiation of responses to neurotransmitters. Potentiation requires an interaction between a transmitter and a potentiator, mediated through the target receptor. We have studied the mechanism by which neurosteroids potentiate transmitter responses, using concatemers of covalently linked subunits to control the number and position of subunits in the assembled receptor and to selectively introduce mutations into positionally defined copies of a subunit. We found that the steroid needs to interact with only one site to produce potentiation, that the native sites for steroid interaction have indistinguishable properties, and that steroid potentiation appears to result from a global effect on receptor function.
Collapse
|
13
|
Bracamontes J, McCollum M, Esch C, Li P, Ann J, Steinbach JH, Akk G. Occupation of either site for the neurosteroid allopregnanolone potentiates the opening of the GABAA receptor induced from either transmitter binding site. Mol Pharmacol 2011; 80:79-86. [PMID: 21498656 PMCID: PMC3127533 DOI: 10.1124/mol.111.071662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/13/2011] [Indexed: 11/22/2022] Open
Abstract
Potentiating neuroactive steroids are potent and efficacious modulators of the GABA(A) receptor that act by allosterically enhancing channel activation elicited by GABA. Steroids interact with the membrane-spanning domains of the α subunits of the receptor, whereas GABA binds to pockets in the interfaces between β and α subunits. Steroid interaction with a single site is known to be sufficient to produce potentiation, but it is not clear whether effects within the same β-α pair mediate potentiation. Here, we have investigated whether the sites for GABA and steroids are functionally linked (i.e., whether the occupancy of a steroid site selectively affects activation elicited by GABA binding to the transmitter binding site within the same β-α pair). For that, we used receptors formed of mutated concatenated subunits to selectively eliminate one of the two GABA sites and one of the two steroid sites. The data demonstrate that receptors containing a single functional GABA site are potentiated by the neurosteroid allopregnanolone regardless of whether the steroid interacts with the α subunit from the same or the other β-α pair. We conclude that steroids potentiate the opening of the GABA(A) receptor induced by either agonist binding site.
Collapse
Affiliation(s)
- John Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mechanism of Allosteric Modulation of the Cys-loop Receptors. Pharmaceuticals (Basel) 2010; 3:2592-2609. [PMID: 27713368 PMCID: PMC4033940 DOI: 10.3390/ph3082592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/30/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022] Open
Abstract
The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric modulation by many pharmaceutical agents and endogenous modulators. By binding to a site of the receptor distinct from the neurotransmitter binding site, allosteric modulators alter the response of the receptors to their agonists. The mechanism of allosteric modulation is traditionally believed to be that allosteric modulators directly change the binding affinity of receptors for their agonists. More recent studies support the notion that these allosteric modulators are very weak agonists or antagonists by themselves. They directly alter channel gating, and thus change the distribution of the receptor across multiple different affinity states, indirectly influencing receptors’ sensitivity to agonists. There are two major locations of allosteric modulator binding sites. One is in subunit interfaces of the amino-terminal domain. The other is in the transmembrane domain close to the channel gating machinery. In this review, we also give some examples of well characterized allosteric binding pockets.
Collapse
|
15
|
Ramerstorfer J, Furtmüller R, Vogel E, Huck S, Sieghart W. The point mutation gamma 2F77I changes the potency and efficacy of benzodiazepine site ligands in different GABAA receptor subtypes. Eur J Pharmacol 2010; 636:18-27. [PMID: 20303942 PMCID: PMC7615656 DOI: 10.1016/j.ejphar.2010.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 11/26/2022]
Abstract
Benzodiazepine site agonists or inverse agonists enhance or reduce gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition of neurons, respectively. Recently, it was demonstrated that the point mutation gamma 2F77I causes a drastic change in the affinity of a variety of benzodiazepine agonists or inverse agonists in receptor binding studies. Here we investigated the potency and efficacy of 10 benzodiazepine site ligands from 6 structural classes in wild-type and gamma 2F77I point mutated recombinant GABA(A) receptors composed of alpha 1 beta 3 gamma 2, alpha 2 beta 3 gamma 2, alpha 3 beta 3 gamma 2, alpha 4 beta 3 gamma 2, alpha 5 beta 3 gamma 2, and alpha 6 beta 3 gamma 2 subunits. Results indicate that the effects of the benzodiazepine site ligands zolpidem, zopiclone, Cl218872, L-655,708 and DMCM were nearly completely eliminated in all mutated receptors up to a 1 microM concentration. The effects of bretazenil, Ro15-1788 or abecarnil were eliminated in some, but not all mutated receptors, suggesting that the gamma 2F77I mutation differentially influences the actions of these ligands in different receptor subtypes. In addition, this point mutation also influences the efficacy of diazepam for enhancing GABA-induced chloride flux, suggesting that the amino acid residue gamma 2F77 might also be involved in the transduction of the effect of benzodiazepines from binding to gating. The application of these drugs in a novel mouse model is discussed.
Collapse
Affiliation(s)
- Joachim Ramerstorfer
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Roman Furtmüller
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Elisabeth Vogel
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sigismund Huck
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Werner Sieghart
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
16
|
Use of concatamers to study GABAA receptor architecture and function: application to delta-subunit-containing receptors and possible pitfalls. Biochem Soc Trans 2010; 37:1338-42. [PMID: 19909272 DOI: 10.1042/bst0371338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many membrane proteins, including the GABA(A) [GABA (gamma-aminobutyric acid) type A] receptors, are oligomers often built from different subunits. As an example, the major adult isoform of the GABA(A) receptor is a pentamer built from three different subunits. Theoretically, co-expression of three subunits may result in many different receptor pentamers. Subunit concatenation allows us to pre-define the relative arrangement of the subunits. This method may thus be used to study receptor architecture, but also the nature of binding sites. Indeed, it made possible the discovery of a novel benzodiazepine site. We use here subunit concatenation to study delta-subunit-containing GABA(A) receptors. We provide evidence for the formation of different functional subunit arrangements in recombinant alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors. As with all valuable techniques, subunit concatenation has also some pitfalls. Most of these can be avoided by carefully titrating and minimizing the length of the linker sequences joining the two linked subunits and avoiding inclusion of the signal sequence of all but the N-terminal subunit of a multi-subunit construct. Maybe the most common error found in the literature is that low expression can be overcome by simply overloading the expression system with genetic information. As some concatenated constructs result by themselves in a low level of expression, this erroneous assembly leading to receptor function may be promoted by overloading the expression system and leads to wrong conclusions.
Collapse
|
17
|
Baburin I, Khom S, Timin E, Hohaus A, Sieghart W, Hering S. Estimating the efficiency of benzodiazepines on GABA(A) receptors comprising gamma1 or gamma2 subunits. Br J Pharmacol 2008; 155:424-33. [PMID: 18604239 PMCID: PMC2451336 DOI: 10.1038/bjp.2008.271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background and purpose: Heterologous expression of α1, β2 and γ2S(γ1) subunits produces a mixed population of GABAA receptors containing α1β2 or α1β2γ2S(γ1) subunits. GABA sensitivity (lower in receptors containing γ1 or γ2S subunits) and the potentiation of GABA-activated chloride currents (IGABA) by benzodiazepines (BZDs) are dependent on γ2S(γ1) incorporation. A variable γ subunit incorporation may affect the estimation of IGABA potentiation by BZDs. We propose an approach for estimation of BZD efficiency that accounts for mixed population of α1β2 and α1β2γ2S(γ1) receptors. Experimental approach: We investigated the relation between GABA sensitivity (EC50) and BZD modulation by analysing triazolam-, clotiazepam- and midazolam-induced potentiation of IGABA in Xenopus oocytes under two-microelectrode voltage clamp. Key results: Plotting EC50 versus BZD-induced shifts of GABA concentration-response curves (ΔEC50(BZD)) of oocytes injected with different amounts of α1, β2 and γ2S(γ1) cRNA (1:1:1–1:1:10) revealed a linear regression between γ2S(γ1)-mediated reduction of GABA sensitivity (EC50) and ΔEC50(BZD). The slope factors of the regression were always higher for oocytes expressing α1β2γ1 subunit receptors (1.8±0.1 (triazolam), 1.6±0.1 (clotiazepam), 2.3±0.2 (midazolam)) than for oocytes expressing α1β2γ2S receptors (1.4±0.1 (triazolam), 1.4±0.1 (clotiazepam), 1.3±0.1 (midazolam)). Mutant GABAA receptors (α1β2-R207Cγ2S) with lower GABA sensitivity showed higher drug efficiencies (slope factors=1.1±0.1 (triazolam), 1.1±0.1 (clotiazepam), 1.2±0.1 (midazolam)). Conclusions and implications: Regression analysis enabled the estimation of BZD efficiency when variable mixtures of α1β2 and α1β2γ2S(γ1) receptors are expressed and provided new insights into the γ2S(γ1) dependency of BZD action.
Collapse
Affiliation(s)
- I Baburin
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Szabadics J, Tamás G, Soltesz I. Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast. Proc Natl Acad Sci U S A 2007; 104:14831-6. [PMID: 17785408 PMCID: PMC1964542 DOI: 10.1073/pnas.0707204104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phasic (synaptic) and tonic (extrasynaptic) inhibition represent the two most fundamental forms of GABA(A) receptor-mediated transmission. Inhibitory postsynaptic currents (IPSCs) generated by GABA(A) receptors are typically extremely rapid synaptic events that do not last beyond a few milliseconds. Although unusually slow GABA(A) IPSCs, lasting for tens of milliseconds, have been observed in recordings of spontaneous events, their origin and mechanisms are not known. We show that neocortical GABA(A,slow) IPSCs originate from a specialized interneuron called neurogliaform cells. Compared with classical GABA(A,fast) IPSCs evoked by basket cells, single spikes in neurogliaform cells evoke extraordinarily prolonged GABA(A) responses that display tight regulation by transporters, low peak GABA concentration, unusual benzodiazepine modulation, and spillover. These results reveal a form of GABA(A) receptor mediated communication by a dedicated cell type that produces slow ionotropic responses with properties intermediate between phasic and tonic inhibition.
Collapse
Affiliation(s)
- János Szabadics
- *Department of Anatomy and Neurobiology, University of California, 193 Irvine Hall, Irvine, CA 92697; and
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of Szeged, Kozep fasor 52, H-6726, Szeged, Hungary
| | - Gábor Tamás
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of Szeged, Kozep fasor 52, H-6726, Szeged, Hungary
| | - Ivan Soltesz
- *Department of Anatomy and Neurobiology, University of California, 193 Irvine Hall, Irvine, CA 92697; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Sigel E, Baur R, Boulineau N, Minier F. Impact of subunit positioning on GABAA receptor function. Biochem Soc Trans 2007; 34:868-71. [PMID: 17052217 DOI: 10.1042/bst0340868] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The major isoforms of the GABAA (gamma-aminobutyric acid type A) receptor are composed of two alpha, two beta and one gamma subunit. Thus alpha and beta subunits occur twice in the receptor pentamer. As it is well documented that different isoforms of alpha and beta subunits can co-exist in the same pentamer, the question is raised whether the relative position of a subunit isoform affects the functional properties of the receptor. We have used subunit concatenation to engineer receptors of well-defined subunit arrangement to study this question. Although all five subunits may be concatenated, we have focused on the combination of triple and dual subunit constructs. We review here what is known so far on receptors containing simultaneously alpha1 and alpha6 subunits and receptors containing beta1 and beta2 subunits. Subunit concatenation may not only be used to study receptors containing two different subunit isoforms, but also to introduce a point mutation into a defined position in receptors containing either two alpha or beta subunits, or to study the receptor architecture of receptors containing unconventional GABAA receptor subunits. Similar approaches may be used to characterize other members of the pentameric ligand-gated ion channel family, including nicotinic acetylcholine receptors, glycine receptors and 5-HT3 (5-hydroxytryptamine) receptors.
Collapse
Affiliation(s)
- E Sigel
- Department of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
20
|
|
21
|
Baur R, Minier F, Sigel E. A GABAAreceptor of defined subunit composition and positioning: Concatenation of five subunits. FEBS Lett 2006; 580:1616-20. [PMID: 16494876 DOI: 10.1016/j.febslet.2006.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 10/25/2022]
Abstract
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.
Collapse
Affiliation(s)
- Roland Baur
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|