1
|
Interactions of the α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations. Mar Drugs 2020; 18:md18070349. [PMID: 32635340 PMCID: PMC7401271 DOI: 10.3390/md18070349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Notably, α-conotoxins with carboxy-terminal (C-terminal) amidation are inhibitors of the pentameric nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets for neurological diseases and disorders. The (α3)2(β2)3 nAChR subunit arrangement comprises a pair of α3(+)β2(−) and β2(+)α3(−) interfaces, and a β2(+)β2(−) interface. The β2(+)β2(−) interface has been suggested to have higher agonist affinity relative to the α3(+)β2(−) and β2(+)α3(−) interfaces. Nevertheless, the interactions formed by these subunit interfaces with α-conotoxins are not well understood. Therefore, in order to address this, we modelled the interactions between α-conotoxin LsIA and the α3β2 subtype. The results suggest that the C-terminal carboxylation of LsIA predominantly influenced the enhanced contacts of the conotoxin via residues P7, P14 and C17 on LsIA at the α3(+)β2(−) and β2(+)α3(−) interfaces. However, this enhancement is subtle at the β2(+)β2(−) site, which can compensate the augmented interactions by LsIA at α3(+)β2(−) and β2(+)α3(−) binding sites. Therefore, the divergent interactions at the individual binding interface may account for the minor changes in binding affinity to α3β2 subtype by C-terminal carboxylation of LsIA versus its wild type, as shown in previous experimental results. Overall, these findings may facilitate the development of new drug leads or subtype-selective probes.
Collapse
|
2
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
3
|
Boffi JC, Marcovich I, Gill-Thind JK, Corradi J, Collins T, Lipovsek MM, Moglie M, Plazas PV, Craig PO, Millar NS, Bouzat C, Elgoyhen AB. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Mol Pharmacol 2017; 91:250-262. [PMID: 28069778 PMCID: PMC5325082 DOI: 10.1124/mol.116.107482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - JasKiran K Gill-Thind
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Jeremías Corradi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Toby Collins
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - María Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Marcelo Moglie
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Paola V Plazas
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Patricio O Craig
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Neil S Millar
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Cecilia Bouzat
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B).
| |
Collapse
|
4
|
Suresh A, Hung A. Molecular simulation study of the unbinding of α-conotoxin [ϒ4E]GID at the α7 and α4β2 neuronal nicotinic acetylcholine receptors. J Mol Graph Model 2016; 70:109-121. [PMID: 27721068 DOI: 10.1016/j.jmgm.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022]
Abstract
The α7 and α4β2 neuronal nicotinic receptors belonging to the family of ligand-gated ion channels are most prevalent in the brain, and are implicated in various neurodegenerative disorders. α-conotoxin GID (and its analogue [ϒ4E]GID) specifically inhibits these subtypes, with more affinity towards the human α7 (hα7) subtype, and is valuable in understanding the physiological roles of these receptors. In this study, we use umbrella-sampling molecular dynamics simulations to understand the mechanism of interaction between [ϒ4E]GID and the agonist binding pockets of the α4β2 and the hα7 receptors, and to estimate their relative binding affinities (ΔGbind). The obtained ΔGbind values indicate stronger interaction with the hα7 receptor, in agreement with previous experimental studies. Simulations also revealed different unbinding pathways between the two receptor subtypes, enabling identification of a number of interactions at locations far from the orthosteric binding site which may explain the difference in [ϒ4E]GID potency. The pathways identified will help in the design of novel conotoxins with increased potency at α4β2, for which there is currently no known highly potent conotoxin inhibitor. Computational mutational free energy analyses also revealed a number of possible single-site mutations to GID which might enhance its selective binding to α4β2 over α7.
Collapse
Affiliation(s)
- Abishek Suresh
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
5
|
Abraham N, Paul B, Ragnarsson L, Lewis RJ. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). PLoS One 2016; 11:e0157363. [PMID: 27304486 PMCID: PMC4909209 DOI: 10.1371/journal.pone.0157363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/27/2016] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.
Collapse
Affiliation(s)
- Nikita Abraham
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Blessy Paul
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lotten Ragnarsson
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
6
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
7
|
Mallipeddi PL, Pedersen SE, Briggs JM. Interactions of acetylcholine binding site residues contributing to nicotinic acetylcholine receptor gating: role of residues Y93, Y190, K145 and D200. J Mol Graph Model 2013; 44:145-54. [PMID: 23831994 DOI: 10.1016/j.jmgm.2013.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
The nicotinic acetylcholine receptor exhibits multiple conformational states, resting (channel closed), active (channel open) and desensitized (channel closed). The resting state may be distinguished from the active and desensitized states by the orientation of loop C in the extracellular ligand binding domain (LBD). Homology modeling was used to generate structures of the Torpedo californica α2βδγ nAChR that initially represent the resting state (loop C open) and the desensitized state (loop C closed). Molecular dynamics (MD) simulations were performed on the extracellular LBD on each nAChR conformational state, with and without the agonist anabaseine present in each binding site (the αγ and the αδ sites). Three MD simulations of 10ns each were performed for each of the four conditions. Comparison of dynamics revealed that in the presence of agonist, loop C was drawn inward and attains a more stable conformation. Examination of side-chain interactions revealed that residue αY190 exhibited hydrogen-bonding interactions either with residue αY93 in the ligand binding site or with residue αK145 proximal to the binding site. αK145 also exhibited side chain (salt bridge) interactions with αD200 and main chain interactions with αY93. Residues αW149, αY198, γY116/δT119, γL118/δL121 and γL108/δL111 appear to play the role of stabilizing ligand in the binding site. In MD simulations for the desensitized state, the effect of ligand upon the interactions among αK145, αY190, and αY93 as well as ligand-hydrogen-bonding to αW149 were more pronounced at the αγ interface than at the αδ interface. Differences in affinity for the desensitized state were determined experimentally to be 10-fold. The changes in side chain interactions observed for the two conformations and induced by ligand support a model wherein hydrogen bond interactions between αD200 and αY93 are broken and rearrange to form a salt-bridge between αK145 and αD200 and hydrogen bond interactions between αY93 and αY190 and between αK145 and αY190.
Collapse
Affiliation(s)
- Prema L Mallipeddi
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
8
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
9
|
Velisetty P, Chakrapani S. Desensitization mechanism in prokaryotic ligand-gated ion channel. J Biol Chem 2012; 287:18467-77. [PMID: 22474322 DOI: 10.1074/jbc.m112.348045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Crystal structures of Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated prokaryotic homologue of pentameric ligand-gated ion channel (LGIC) from G. violaceus, have provided high-resolution models of the channel architecture and its role in selective ion conduction and drug binding. However, it is still unclear which functional states of the LGIC gating scheme these crystal structures represent. Much of this uncertainty arises from a lack of thorough understanding of the functional properties of these prokaryotic channels. To elucidate the molecular events that constitute gating, we have carried out an extensive characterization of GLIC function and dynamics in reconstituted proteoliposomes by patch clamp measurements and EPR spectroscopy. We find that GLIC channels show rapid activation upon jumps to acidic pH followed by a time-dependent loss of conductance because of desensitization. GLIC desensitization is strongly coupled to activation and is modulated by voltage, permeant ions, pore-blocking drugs, and membrane cholesterol. Many of these properties are parallel to functions observed in members of eukaryotic LGIC. Conformational changes in loop C, measured by site-directed spin labeling and EPR spectroscopy, reveal immobilization during desensitization analogous to changes in LGIC and acetylcholine binding protein. Together, our studies suggest conservation of mechanistic aspects of desensitization among LGICs of prokaryotic and eukaryotic origin.
Collapse
Affiliation(s)
- Phanindra Velisetty
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
10
|
Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat Neurosci 2011; 14:1253-9. [PMID: 21909087 DOI: 10.1038/nn.2908] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023]
Abstract
The α(7) acetylcholine receptor (AChR) mediates pre- and postsynaptic neurotransmission in the central nervous system and is a potential therapeutic target in neurodegenerative, neuropsychiatric and inflammatory disorders. We determined the crystal structure of the extracellular domain of a receptor chimera constructed from the human α(7) AChR and Lymnaea stagnalis acetylcholine binding protein (AChBP), which shares 64% sequence identity and 71% similarity with native α(7). We also determined the structure with bound epibatidine, a potent AChR agonist. Comparison of the structures revealed molecular rearrangements and interactions that mediate agonist recognition and early steps in signal transduction in α(7) AChRs. The structures further revealed a ring of negative charge within the central vestibule, poised to contribute to cation selectivity. Structure-guided mutational studies disclosed distinctive contributions to agonist recognition and signal transduction in α(7) AChRs. The structures provide a realistic template for structure-aided drug design and for defining structure-function relationships of α(7) AChRs.
Collapse
|
11
|
Liu S, Babcock MS, Bode J, Chang JS, Fischer HD, Garlick RL, Gill GS, Lund ET, Margolis BJ, Mathews WR, Rogers BN, Wolfe M, Groppi V, Baldwin ET. Affinity purification of a chimeric nicotinic acetylcholine receptor in the agonist and antagonist bound states. Protein Expr Purif 2011; 79:102-10. [DOI: 10.1016/j.pep.2011.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Shenping Liu
- Pfizer Inc., Pfizer Global Research and Development, Groton, CT 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blum AP, Gleitsman KR, Lester HA, Dougherty DA. Evidence for an extended hydrogen bond network in the binding site of the nicotinic receptor: role of the vicinal disulfide of the alpha1 subunit. J Biol Chem 2011; 286:32251-8. [PMID: 21757705 DOI: 10.1074/jbc.m111.254235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The defining feature of the α subunits of the family of nicotinic acetylcholine receptors is a vicinal disulfide between Cys-192 and Cys-193. Although this structure has played a pivotal role in a number of pioneering studies of nicotinic receptors, its functional role in native receptors remains uncertain. Using mutant cycle analysis and unnatural residue mutagenesis, including backbone mutagenesis of the peptide bond of the vicinal disulfide, we have established the presence of a network of hydrogen bonds that extends from that peptide NH, across a β turn to another backbone hydrogen bond, and then across the subunit interface to the side chain of a functionally important Asp residue in the non-α subunit. We propose that the role of the vicinal disulfide is to distort the β turn and thereby properly position a backbone NH for intersubunit hydrogen bonding to the key Asp.
Collapse
Affiliation(s)
- Angela P Blum
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
14
|
Geitmann M, Retra K, de Kloe GE, Homan E, Smit AB, de Esch IJP, Danielson UH. Interaction Kinetic and Structural Dynamic Analysis of Ligand Binding to Acetylcholine-Binding Protein. Biochemistry 2010; 49:8143-54. [DOI: 10.1021/bi1006354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kim Retra
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Evert Homan
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - U. Helena Danielson
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Kool J, de Kloe GE, Bruyneel B, de Vlieger JS, Retra K, Wijtmans M, van Elk R, Smit AB, Leurs R, Lingeman H, de Esch IJ, Irth H. Online Fluorescence Enhancement Assay for the Acetylcholine Binding Protein with Parallel Mass Spectrometric Identification. J Med Chem 2010; 53:4720-30. [DOI: 10.1021/jm100230k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Ben Bruyneel
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Jon S. de Vlieger
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Kim Retra
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rene van Elk
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Rob Leurs
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Henk Lingeman
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Hubertus Irth
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 2010; 31:161-74. [PMID: 20096941 DOI: 10.1016/j.tips.2009.12.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
It is over forty years since the major neurotransmitters and their protein receptors were identified, and over twenty years since determination of the first amino-acid sequences of the Cys-loop receptors that recognize acetylcholine, serotonin, GABA and glycine. The last decade has seen the first structures of these proteins (and related bacterial and molluscan homologues) determined to atomic resolution. Hopefully over the next decade, more detailed molecular structures of entire Cys-loop receptors in drug-bound and drug-free conformations will become available. These, together with functional studies, will provide a clear picture of how these receptors participate in neurotransmission and how structural variations between receptor subtypes impart their unique characteristics. This insight should facilitate the design of novel and improved therapeutics to treat neurological disorders. This review considers our current understanding about the processes of agonist binding, receptor activation and channel opening, as well as allosteric modulation of the Cys-loop receptor family.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
17
|
Tsetlin V, Utkin Y, Kasheverov I. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:720-31. [PMID: 19501053 DOI: 10.1016/j.bcp.2009.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
18
|
Huang X, Zheng F, Zhan CG. Modeling differential binding of alpha4beta2 nicotinic acetylcholine receptor with agonists and antagonists. J Am Chem Soc 2009; 130:16691-6. [PMID: 19554732 DOI: 10.1021/ja8055326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional structures of both the open- and closed-channel states of alpha4beta2 receptor have been modeled and used to study their binding with representative agonists and antagonists. The obtained binding structures and free energies consistently reveal that antagonists bind more favorably with the closed-channel state and agonists bind more favorably with the open-channel state. The computational insights have led us to propose a computational strategy and protocol predicting whether a receptor ligand is an agonist or antagonist. Using the computational protocol, one only needs to calculate the relative binding free energies for a ligand binding with the open- and closed-channel structures. The ligand is predicted to be an agonist if the binding free energy calculated for the ligand binding with the open-channel state is significantly lower than that for its binding with the closed-channel state. If the binding free energy of a ligand with the open-channel state is higher than that with the closed-channel, the ligand is predicted to be an antagonist. The binding free energies calculated for all of the ligands binding with their most favorable channel states of the receptor are all close to the corresponding experimentally derived binding free energies. The new computational insights obtained and novel computational strategy and protocol proposed in this study are expected to be valuable in structure-based rational design of novel agonists/antagonists of nAChRs as therapeutic agents.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
19
|
Lee WY, Free CR, Sine SM. Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions. J Neurosci 2009; 29:3189-99. [PMID: 19279256 PMCID: PMC2728446 DOI: 10.1523/jneurosci.6185-08.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/21/2022] Open
Abstract
The nicotinic acetylcholine receptor (AChR) transduces binding of nerve-released ACh into opening of an intrinsic ion channel, yet the intraprotein interactions behind transduction remain to be fully elucidated. Attention has focused on the region of the AChR in which the beta1-beta2 and Cys-loops from the extracellular domain project into a cavity framed by residues preceding the first transmembrane domain (pre-M1) and the linker spanning transmembrane domains M2 and M3. Previous studies identified a principal transduction pathway in which the pre-M1 domain is coupled to the M2-M3 linker through the beta1-beta2 loop. Here we identify a parallel pathway in which the pre-M1 domain is coupled to the M2-M3 linker through the Cys-loop. Mutagenesis, single-channel kinetic analyses and thermodynamic mutant cycle analyses reveal energetic coupling among alphaLeu 210 from the pre-M1 domain, alphaPhe 135 and alphaPhe 137 from the Cys-loop, and alphaLeu 273 from the M2-M3 linker. Residues at equivalent positions of non-alpha-subunits show negligible coupling, indicating these interresidue couplings are specific to residues in the alpha-subunit. Thus, the extracellular beta1-beta2 and Cys-loops bridge the pre-M1 domain and M2-M3 linker to transduce agonist binding into channel gating.
Collapse
Affiliation(s)
- Won Yong Lee
- Receptor Biology Laboratory and
- Departments of Physiology and Biomedical Engineering and
| | - Chris R. Free
- Receptor Biology Laboratory and
- Departments of Physiology and Biomedical Engineering and
| | - Steven M. Sine
- Receptor Biology Laboratory and
- Departments of Physiology and Biomedical Engineering and
- Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
20
|
Skinner AL, Laurence JS. High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 2009; 97:4670-95. [PMID: 18351634 DOI: 10.1002/jps.21378] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability of a small molecule to bind and modify the activity of a protein target at a specific site greatly impacts the success of drugs in the pharmaceutical industry. One of the most important tools for evaluating these interactions has been high-field solution nuclear magnetic resonance (NMR) because of its unique ability to examine even weak protein-drug interactions at high resolution. NMR can be used to evaluate the structural, thermodynamic and kinetic aspects of a binding reaction. The basis of NMR screening experiments is that binding causes a perturbation in the physical properties of both molecules. Unique properties of small and macromolecules allow selective detection of either the protein target or ligand, even in a mixture of compounds. This review outlines current methodologies for assessing protein-ligand interactions from the perspectives of the protein target and ligand and delineates the fundamental principles for understanding NMR approaches in drug research. Advances in instrumentation, pulse sequences, isotopic labeling strategies, and the development of competition experiments support the study of higher molecular weight protein targets, facilitate higher-throughput and expand the range of binding affinities that can be evaluated, enhancing the utility of NMR for identifying and characterizing potential therapeutics to druggable protein targets.
Collapse
Affiliation(s)
- Andria L Skinner
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
21
|
Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry. PEST MANAGEMENT SCIENCE 2008; 64:1084-98. [PMID: 18712805 DOI: 10.1002/ps.1631] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, neonicotinoids have been the fastest-growing class of insecticides in modern crop protection, with widespread use against a broad spectrum of sucking and certain chewing pests. As potent agonists, they act selectively on insect nicotinic acetylcholine receptors, their molecular target site. The discovery of neonicotinoids can be considered as a milestone in insecticide research and facilitates greatly the understanding of the functional properties of insect nicotinic acetylcholine receptors. Because of the relatively low risk for non-target organisms and environment, the high target specificity of neonicotinoid insecticides and their versatility in application methods, this important class has to be maintained globally for integrated pest management strategies and insect resistance management programmes. This review comprehensively describes particularly the origin, structure and bonding as well as associated properties of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Peter Jeschke
- Bayer CropScience AG, Research Insecticides Chemistry Insecticides, Building 6240, Alfred-Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| | | |
Collapse
|
22
|
Lee WY, Free CR, Sine SM. Nicotinic receptor interloop proline anchors beta1-beta2 and Cys loops in coupling agonist binding to channel gating. ACTA ACUST UNITED AC 2008; 132:265-78. [PMID: 18663134 PMCID: PMC2483337 DOI: 10.1085/jgp.200810014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptors (AChRs) mediate rapid excitatory synaptic transmission throughout the peripheral and central nervous systems. They transduce binding of nerve-released ACh into opening of an intrinsic channel, yet the structural basis underlying transduction is not fully understood. Previous studies revealed a principal transduction pathway in which αArg 209 of the pre-M1 domain and αGlu 45 of the β1–β2 loop functionally link the two regions, positioning αVal 46 of the β1–β2 loop in a cavity formed by αPro 272 through αSer 269 of the M2–M3 loop. Here we investigate contributions of residues within and proximal to this pathway using single-channel kinetic analysis, site-directed mutagenesis, and thermodynamic mutant cycle analysis. We find that in contributing to channel gating, αVal 46 and αVal 132 of the signature Cys loop couple energetically to αPro 272. Furthermore, these residues are optimized in both their size and hydrophobicity to mediate rapid and efficient channel gating, suggesting naturally occurring substitutions at these positions enable a diverse range of gating rate constants among the Cys-loop receptor superfamily. The overall results indicate that αPro 272 functionally couples to flanking Val residues extending from the β1–β2 and Cys loops within the ACh binding to channel opening transduction pathway.
Collapse
Affiliation(s)
- Won Yong Lee
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
23
|
Venkatachalan SP, Czajkowski C. A conserved salt bridge critical for GABA(A) receptor function and loop C dynamics. Proc Natl Acad Sci U S A 2008; 105:13604-9. [PMID: 18757734 PMCID: PMC2533236 DOI: 10.1073/pnas.0801854105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 11/18/2022] Open
Abstract
Chemical signaling in the brain involves rapid opening and closing of ligand gated ion channels (LGICs). LGICs are allosteric membrane proteins that transition between multiple conformational states (closed, open, and desensitized) in response to ligand binding. While structural models of cys-loop LGICs have been recently developed, our understanding of the protein movements underlying these conformational transitions is limited. Neurotransmitter binding is believed to initiate an inward capping movement of the loop C region of the ligand-binding site, which ultimately triggers channel gating. Here, we identify a critical intrasubunit salt bridge between conserved charged residues (betaE153, betaK196) in the GABA(A) receptor (GABA(A)R) that is involved in regulating loop C position. Charge reversals (E153K, K196E) increased the EC(50) for GABA and for the allosteric activators pentobarbital (PB) and propofol indicating that these residues are critical for channel activation, and charge swap (E153K-K196E) significantly rescued receptor function suggesting a functional electrostatic interaction. Mutant cycle analysis of alanine substitutions indicated that E153 and K196 are energetically coupled. By monitoring disulfide bond formation between cysteines substituted at these positions (E153C-K196C), we probed the mobility of loop C in resting and ligand-bound states. Disulfide bond formation was significantly reduced in the presence of GABA or PB suggesting that agonist activation of the GABA(A)R proceeds via restricting loop C mobility.
Collapse
Affiliation(s)
| | - Cynthia Czajkowski
- Department of Physiology, University of Wisconsin–Madison, 601 Science Drive, Madison, WI 53711
| |
Collapse
|
24
|
Sine SM, Gao F, Lee WY, Mukhtasimova N, Wang HL, Engel AG. Recent Structural and Mechanistic Insights into Endplate Acetylcholine Receptors. Ann N Y Acad Sci 2008; 1132:53-60. [DOI: 10.1196/annals.1405.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Faghih R, Gopalakrishnan M, Briggs CA. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem 2008; 51:701-12. [PMID: 18198823 DOI: 10.1021/jm070256g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramin Faghih
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
26
|
Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor. Biophys J 2007; 93:2622-34. [PMID: 17573436 PMCID: PMC1989720 DOI: 10.1529/biophysj.107.109843] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022] Open
Abstract
We explore the conformational dynamics of a homology model of the human alpha7 nicotinic acetylcholine receptor using molecular dynamics simulation and analyses of root mean-square fluctuations, block partitioning of segmental motion, and principal component analysis. The results reveal flexible regions and concerted global motions of the subunits encompassing extracellular and transmembrane domains of the subunits. The most relevant motions comprise a bending, hinged at the beta10-M1 region, accompanied by concerted tilting of the M2 helices that widens the intracellular end of the channel. Despite the nanosecond timescale, the observations suggest that tilting of the M2 helices may initiate opening of the pore. The results also reveal direct coupling between a twisting motion of the extracellular domain and dynamic changes of M2. Covariance analysis of interresidue motions shows that this coupling arises through a network of residues within the Cys and M2-M3 loops where Phe135 is stabilized within a hydrophobic pocket formed by Leu270 and Ile271. The resulting concerted motion causes a downward shift of the M2 helices that disrupts a hydrophobic girdle formed by 9' and 13' residues.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Howard Hughes Medical Institute, National Science Foundation Center for Theoretical Biophysics, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|
27
|
Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI. Eukaryotic class 1 translation termination factor eRF1--the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis. FEBS J 2007; 274:4223-37. [PMID: 17651434 DOI: 10.1111/j.1742-4658.2007.05949.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other.
Collapse
Affiliation(s)
- Elena V Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Tomizawa M, Maltby D, Medzihradszky KF, Zhang N, Durkin KA, Presley J, Talley TT, Taylor P, Burlingame AL, Casida JE. Defining nicotinic agonist binding surfaces through photoaffinity labeling. Biochemistry 2007; 46:8798-806. [PMID: 17614369 PMCID: PMC4778401 DOI: 10.1021/bi700667v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine (ACh) receptor (nAChR) agonists are potential therapeutic agents for neurological dysfunction. In the present study, the homopentameric mollusk ACh binding protein (AChBP), used as a surrogate for the extracellular ligand-binding domain of the nAChR, was specifically derivatized by the highly potent agonist azidoepibatidine (AzEPI) prepared as a photoaffinity probe and radioligand. One EPI-nitrene photoactivated molecule was incorporated in each subunit interface binding site based on analysis of the intact derivatized protein. Tryptic fragments of the modified AChBP were analyzed by collision-induced dissociation and Edman sequencing of radiolabeled peptides. Each specific EPI-nitrene-modified site involved either Tyr195 of loop C on the principal or (+)-face or Met116 of loop E on the complementary or (-)-face. The two derivatization sites were observed in similar frequency, providing evidence of the reactivity of the azido/nitrene probe substituent and close proximity to both residues. [3H]AzEPI binds to the alpha4beta2 nAChR at a single high-affinity site and photoaffinity-labels only the alpha4 subunit, presumably modifying Tyr225 spatially corresponding to Tyr195 of AChBP. Phe137 of the beta2 nAChR subunit, equivalent to Met116 of AChBP, conceivably lacks sufficient reactivity with the nitrene generated from the probe. The present photoaffinity labeling in a physiologically relevant condition combined with the crystal structure of AChBP allows development of precise structural models for the AzEPI interactions with AChBP and alpha4beta2 nAChR. These findings enabled us to use AChBP as a structural surrogate to define the nAChR agonist site.
Collapse
Affiliation(s)
- Motohiro Tomizawa
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| | - David Maltby
- Mass Spectrometry Facility, University of California, San Francisco, California 94143-0446
| | | | - Nanjing Zhang
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| | - Kathleen A. Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720-1460
| | - Jack Presley
- Molecular Structure Facility, University of California, Davis, California 95616
| | - Todd T. Talley
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0650
| | - Alma L. Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143-0446
| | - John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| |
Collapse
|
29
|
Hansen SB, Taylor P. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-alpha-subunit interfaces of heteromeric neuronal nicotinic receptors. J Mol Biol 2007; 369:895-901. [PMID: 17481657 PMCID: PMC2031909 DOI: 10.1016/j.jmb.2007.03.067] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/28/2022]
Abstract
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.
Collapse
Affiliation(s)
- Scott B. Hansen
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA 92093-0650
- Department of Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA 92093-0650
| |
Collapse
|
30
|
Abstract
Binding of neurotransmitter triggers gating of synaptic receptor channels, but our understanding of the structures that link the binding site to the channel is just beginning to develop. Here, we identify an intersubunit triggering element required for rapid and efficient gating of muscle nicotinic receptors using a structural model of the Torpedo receptor at 4 A resolution, recordings of currents through single receptor channels, measurements of inter-residue energetic coupling, and functional consequences of disulfide trapping. Mutation of the conserved residues, alphaTyr 127, epsilonAsn 39, and deltaAsn 41, located at the two subunit interfaces that form the agonist binding sites, markedly attenuates acetylcholine-elicited channel gating; mutant cycle analyses based on changes in the channel gating equilibrium constant reveal strong energetic coupling among these residues. After each residue is substituted with Cys, oxidizing conditions that promote disulfide bond formation attenuate gating of mutant, but not wild-type receptors. Gating is similarly attenuated when the Cys substitutions are confined to either of the binding-site interfaces, but can be restored by reducing conditions that promote disulfide bond breakage. Thus, the Tyr-Asn pair is an intersubunit trigger of rapid and efficient gating of muscle nicotinic receptors.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Departments of Physiology and Biomedical Engineering and Neurology, Receptor Biology Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Steven M. Sine
- Departments of Physiology and Biomedical Engineering and Neurology, Receptor Biology Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
31
|
Hibbs RE, Radic Z, Taylor P, Johnson DA. Influence of agonists and antagonists on the segmental motion of residues near the agonist binding pocket of the acetylcholine-binding protein. J Biol Chem 2006; 281:39708-18. [PMID: 17068341 DOI: 10.1074/jbc.m604752200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the Lymnaea acetylcholine-binding protein as a surrogate of the extracellular domain of the nicotinic receptor, we combined site-directed labeling with fluorescence spectroscopy to assess possible linkages between ligand binding and conformational dynamics. Specifically, 2-[(5-fluoresceinyl)aminocarbonyl]ethyl methanethiosulfonate was conjugated to a free cysteine on loop C and to five substituted cysteines at strategic locations in the subunit sequence, and the backbone flexibility around each site of conjugation was measured with time-resolved fluorescence anisotropy. The sites examined were in loop C (Cys-188 using a C187S mutant), in the beta9 strand (T177C), in the beta10 strand (D194C), in the beta8-beta9 loop (N158C and Y164C), and in the beta7 strand (K139C). Conjugated fluorophores at these locations show distinctive anisotropy decay patterns indicating different degrees of segmental fluctuations near the agonist binding pocket. Ligand occupation and decay of anisotropy were assessed for one agonist (epibatidine) and two antagonists (alpha-bungarotoxin and d-tubocurarine). The Y164C and Cys-188 conjugates were also investigated with additional agonists (nicotine and carbamylcholine), partial agonists (lobeline and 4-hydroxy,2-methoxy-benzylidene anabaseine), and an antagonist (methyllycaconitine). With the exception of the T177C conjugate, both agonists and antagonists perturbed the backbone flexibility of each site; however, agonist-selective changes were only observed at Y164C in loop F where the agonists and partial agonists increased the range and/or rate of the fast anisotropy decay processes. The results reveal that agonists and antagonists produced distinctive changes in the flexibility of a portion of loop F.
Collapse
Affiliation(s)
- Ryan E Hibbs
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|