1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Jørgensen AS, Rosenkilde MM, Hjortø GM. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective. Gen Comp Endocrinol 2018; 258:4-14. [PMID: 28694053 DOI: 10.1016/j.ygcen.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
Chemokines (chemotactic cytokines) and their associated G protein-coupled receptors (GPCRs) work in a concerted manner to govern immune cell positioning in time and space. Promiscuity of both ligands and receptors, but also biased signaling within the chemokine system, adds to the complexity of how the cell-based immune system is controlled. Bias comes in three forms; ligand-, receptor- and tissue-bias. Biased signaling is increasingly being recognized as playing an important role in contributing to the fine-tuned coordination of immune cell chemotaxis. In the current review we discuss the recent findings related to ligand- and tissue-biased signaling of CCR7 and summarize what is known about bias at other chemokine receptors. CCR7 is expressed by a subset of T-cells and by mature dendritic cells (DCs). Together with its two endogenous ligands CCL19 and CCL21, of which the carboxy terminal tail of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen-specific T-cell mediated immune response. Thus CCR7 and its ligands are key players in initiating cell-based immune responses. CCL19 and CCL21 display differential interaction- and docking-modes for CCR7 leading to stabilization of different CCR7 conformations and hereby preferential activation of distinct intracellular signaling pathways (i.e. ligand bias). In general CCL19 seems to generate a strong temporal signal, whereas CCL21 generates a weaker, but more persistent signal. Tissue differential expression of these two ligands, and the generation of a third ligand "tailless-CCL21", through DC specific protease activity (tissue bias), orchestrates DC and T-cell LN homing and priming, with each ligand serving overlapping, but also distinct roles.
Collapse
Affiliation(s)
- Astrid Sissel Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Karlshøj S, Amarandi RM, Larsen O, Daugvilaite V, Steen A, Brvar M, Pui A, Frimurer TM, Ulven T, Rosenkilde MM. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). J Biol Chem 2016; 291:26860-26874. [PMID: 27834679 DOI: 10.1074/jbc.m116.740183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn2+ is anchored to the chemokine receptor-conserved Glu-283VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116III:16/3.40, a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37I:07/1.39, Trp-86II:20/2.60, and Phe-109III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors.
Collapse
Affiliation(s)
- Stefanie Karlshøj
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Roxana Maria Amarandi
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.,the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Olav Larsen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Viktorija Daugvilaite
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anne Steen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Matjaž Brvar
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Aurel Pui
- the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Thomas Michael Frimurer
- the Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark, and
| | - Trond Ulven
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Mette Marie Rosenkilde
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark,
| |
Collapse
|
4
|
Chalikiopoulos A, Thiele S, Malmgaard-Clausen M, Rydberg P, Isberg V, Ulven T, Frimurer TM, Rosenkilde MM, Gloriam DE. Structure-activity relationships and identification of optmized CC-chemokine receptor CCR1, 5, and 8 metal-ion chelators. J Chem Inf Model 2013; 53:2863-73. [PMID: 24083637 DOI: 10.1021/ci4003848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridine, 1,10-phenanthroline, and 2,2';6',2″-terpyridine. Here, we have performed an in-depth structure-activity relationship study and tested eight new optimized analogs. Using density functional theory calculations we demonstrate that the chelator zinc affinities depend on how electron-donating and -withdrawing substituents modulate the partial charges of chelating nitrogens. The zinc affinity was found to constitute the major factor for receptor potency, although the activity of some chelators deviate suggesting favorable or unfavorable interactions. Hydrophobic and halogen substituents are generally better accommodated in the receptors than polar groups. The new analog brominated terpyridine (29) resulted in the highest chelator potencies observed so far CCR1 (EC50: 0.49 μM) and CCR8 (EC50: 0.28 μM). Furthermore, we identified the first selective CCR5 agonist chelator, meta dithiomethylated bipyridine (23). The structure-activity relationships contribute to small-molecule drug development, and the novel chelators constitute valuable tools for studies of structural mechanisms for chemokine receptor activation.
Collapse
Affiliation(s)
- Alexander Chalikiopoulos
- Department of Drug Design and Pharmacology, ‡Department of Neuroscience and Pharmacology and ⊥The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , DK-1165 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Thiele S, Malmgaard-Clausen M, Engel-Andreasen J, Steen A, Rummel PC, Nielsen MC, Gloriam DE, Frimurer TM, Ulven T, Rosenkilde MM. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. J Med Chem 2012; 55:8164-77. [DOI: 10.1021/jm301121j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stefanie Thiele
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mikkel Malmgaard-Clausen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Jens Engel-Andreasen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Anne Steen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Pia C. Rummel
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mads C. Nielsen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - David E. Gloriam
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Dk-2100
Copenhagen, Denmark
| | - Thomas M. Frimurer
- The
Novo Nordisk Foundation
Center for Basic Metabolic Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Blegdamsvej
3, Dk-2200 Copenhagen, Denmark
| | - Trond Ulven
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Mette M. Rosenkilde
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| |
Collapse
|
6
|
Mokrosiński J, Frimurer TM, Sivertsen B, Schwartz TW, Holst B. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop. J Biol Chem 2012; 287:33488-502. [PMID: 22846991 DOI: 10.1074/jbc.m112.383240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.
Collapse
Affiliation(s)
- Jacek Mokrosiński
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
7
|
McCoy KL, Hepler JR. Regulators of G protein signaling proteins as central components of G protein-coupled receptor signaling complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:49-74. [PMID: 20374713 DOI: 10.1016/s1877-1173(09)86003-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulators of G protein signaling (RGS) proteins bind directly to G protein alpha (Gα) subunits to regulate the signaling functions of Gα and their linked G protein-coupled receptors (GPCRs). Recent studies indicate that RGS proteins also interact with GPCRs, not just G proteins, to form preferred functional pairs. Interactions between GPCRs and RGS proteins may be direct or indirect (via a linker protein) and are dictated by the receptors, rather than the linked G proteins. Emerging models suggest that GPCRs serve as platforms for assembling an overlapping and distinct constellation of signaling proteins that perform receptor-specific signaling tasks. Compelling evidence now indicates that RGS proteins are central components of these GPCR signaling complexes. This review will outline recent discoveries of GPCR/RGS pairs as well as new data in support of the idea that GPCRs serve as platforms for the formation of multiprotein signaling complexes.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, G205 Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
8
|
Zürn A, Zabel U, Vilardaga JP, Schindelin H, Lohse MJ, Hoffmann C. Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 2009; 75:534-41. [PMID: 19106230 DOI: 10.1124/mol.108.052399] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Several lines of evidence suggest that G-protein-coupled receptors can adopt different active conformations, but their direct demonstration in intact cells is still missing. Using a fluorescence resonance energy transfer (FRET)-based approach we studied conformational changes in alpha(2A)-adrenergic receptors in intact cells. The receptors were C-terminally labeled with cyan fluorescent protein and with fluorescein arsenical hairpin binder at different sites in the third intracellular loop: N-terminally close to transmembrane domain V (I3-N), in the middle of the loop (I3-M), or C-terminally close to transmembrane domain VI (I3-C). All constructs retained normal ligand binding and signaling properties. Changes in FRET between the labels were determined in intact cells in response to different agonists. The full agonist norepinephrine evoked similar FRET changes for all three constructs. The strong partial agonists clonidine and dopamine induced partial FRET changes for all constructs. However, the weak partial agonists octopamine and norphenephrine only induced detectable changes in the construct I3-C but no change in I3-M and I3-N. Dopamine-induced FRET-signals were approximately 1.5-fold slower than those for norepinephrine in I3-C and I3-M but >3-fold slower in I3-N. Our data indicate that the different ligands induced conformational changes in the receptor that were sensed differently in different positions of the third intracellular loop. This agrees with X-ray receptor structures indicating larger agonist-induced movements at the cytoplasmic ends of transmembrane domain VI than V and suggests that partial agonism is linked to distinct conformational changes within a G-protein-coupled receptor.
Collapse
Affiliation(s)
- A Zürn
- Universität Würzburg, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
David R, Günther R, Baumann L, Lühmann T, Seebach D, Hofmann HJ, Beck-Sickinger AG. Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. J Am Chem Soc 2008; 130:15311-7. [PMID: 18942784 DOI: 10.1021/ja802453x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How can we understand the contribution of individual parts or segments to complex structures? A typical strategy to answer this question is simulation of a segmental replacement followed by realization and investigation of the resulting effect in structure-activity studies. For proteins, this problem is commonly addressed by site-directed mutagenesis. A more general approach represents the exchange of whole secondary structure elements by rationally designed segments. For a demonstration of this possibility we identified the alpha-helix at the C-terminus of human interleukin-8 (hIL-8). Since this chemokine possesses four conserved cysteine residues, it can easily be altered by ligation strategies. A set of different segments, which are able to form amphiphilic helices, was synthesized to mimic the C-terminal alpha-helix. Beside sequences of alpha-amino acids, oligomers of non-natural beta(3)-amino acids with the side chains of canonical amino acids were introduced. Such beta-peptides form helices, which differ from the alpha-helix in handedness and dipole orientation. Variants of the semisynthetic hIL-8 proteins demonstrated clearly that the exact side chain orientation is of more importance than helix handedness and dipole orientation. The activity of a chimeric protein with a beta-peptide helix that mimics the side chain orientation of the native alpha-helix most perfectly is comparable to that of the native hIL-8. Concepts like this could be a first step toward the synthesis of proteins consisting of large artificial secondary structure elements.
Collapse
Affiliation(s)
- Ralf David
- Institut für Biochemie, Fakultät für Biowissenschaften, Pharmazie and Psychologie, Universität Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 2008; 153 Suppl 1:S154-66. [PMID: 18204488 DOI: 10.1038/sj.bjp.0707660] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting, and possibly for cell entry. In addition, many virally-encoded chemokine 7TM receptors have been suggested to be causally involved in pathogenic phenotypes like Kaposi sarcoma, atherosclerosis, HIV-infection and tumour development. The role of these receptors during the viral life cycle and in viral pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we highlight the emerging impact of these receptor on virus-mediated diseases.
Collapse
|
12
|
Jensen PC, Nygaard R, Thiele S, Elder A, Zhu G, Kolbeck R, Ghosh S, Schwartz TW, Rosenkilde MM. Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Mol Pharmacol 2007. [DOI: 10.1124/mol.107.035543] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|