1
|
Wang X, Wei C, Zhang Z, Liu D, Guo Y, Sun G, Wang Y, Li H, Tian Y, Kang X, Han R, Li Z. Association of growth traits with a structural variation downstream of the KCNJ11 gene: a large population-based study in chickens. Br Poult Sci 2020; 61:320-327. [PMID: 32008360 DOI: 10.1080/00071668.2020.1724878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The potassium voltage-gated channel subfamily J member 11 gene (KCNJ11) is involved in the insulin secretion pathway. Studies have shown that mutation in this gene is associated with muscle weakness. The objective of the present study was to establish the association between KCNJ11 gene polymorphism and chicken growth performance and to analyse its expression pattern. 2. A novel 163-bp insertion/deletion (indel) polymorphism was identified in the region downstream of the KCNJ11 gene in 2330 individuals from ten populations by polymerase chain reaction (PCR). An F2 resource population was used to investigate the genetic effects of the chicken KCNJ11 gene. Association analysis showed that the indel was significantly associated with chicken growth traits and that the phenotypic value of the ins-ins (II) genotype is higher than that of the ins-del (ID) and del-del (DD) genotypes. 3. Gene expression for different genotypes showed that birds carrying the II allele had a higher expression level than the DD genotypes. Analysis of tissue and spatiotemporal expression patterns indicated that the KCNJ11 gene was highly expressed in muscle tissues, with the highest levels in muscle tissue at one week of age, and that a 10% crude protein diet reduced the expression of this gene, average daily gain and muscle fibre diameter. 4. The results suggested that this novel 163-bp indel has the potential to become a new target for marker-assisted selection.
Collapse
Affiliation(s)
- X Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - C Wei
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Zhang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - D Liu
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Guo
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - G Sun
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - H Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Tian
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - X Kang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - R Han
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| |
Collapse
|
2
|
Usher SG, Ashcroft FM, Puljung MC. Nucleotide inhibition of the pancreatic ATP-sensitive K+ channel explored with patch-clamp fluorometry. eLife 2020; 9:52775. [PMID: 31909710 PMCID: PMC7004565 DOI: 10.7554/elife.52775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ATP-sensitive K+ channels (KATP) comprise four inward rectifier subunits (Kir6.2), each associated with a sulphonylurea receptor (SUR1). ATP/ADP binding to Kir6.2 shuts KATP. Mg-nucleotide binding to SUR1 stimulates KATP. In the absence of Mg2+, SUR1 increases the apparent affinity for nucleotide inhibition at Kir6.2 by an unknown mechanism. We simultaneously measured channel currents and nucleotide binding to Kir6.2. Fits to combined data sets suggest that KATP closes with only one nucleotide molecule bound. A Kir6.2 mutation (C166S) that increases channel activity did not affect nucleotide binding, but greatly perturbed the ability of bound nucleotide to inhibit KATP. Mutations at position K205 in SUR1 affected both nucleotide affinity and the ability of bound nucleotide to inhibit KATP. This suggests a dual role for SUR1 in KATP inhibition, both in directly contributing to nucleotide binding and in stabilising the nucleotide-bound closed state.
Collapse
Affiliation(s)
- Samuel G Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Notary AM, Westacott MJ, Hraha TH, Pozzoli M, Benninger RKP. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLoS Comput Biol 2016; 12:e1005116. [PMID: 27681078 PMCID: PMC5040430 DOI: 10.1371/journal.pcbi.1005116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022] Open
Abstract
Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability. They further suggest novel therapeutic options for NDM and other monogenic forms of diabetes. Diabetes is a disease reaching a global epidemic, which results from dysfunction to the islets of Langerhans in the pancreas and their ability to secrete the hormone insulin to regulate glucose homeostasis. Islets are multicellular structures that show extensive coupling between heterogeneous cellular units; and central to the causes of diabetes is a dysfunction to these cellular units and their interactions. Understanding the inter-relationship between structure and function is challenging in biological systems, but is crucial to the cause of disease and discovering therapeutic targets. With the goal of further characterizing the islet of Langerhans and its excitable behavior, we examined the role of important channels in the islet where dysfunction is linked to or causes diabetes. Advances in our ability to computationally model perturbations in physiological systems has allowed for the testing of hypothesis quickly, in systems that are not experimentally accessible. Using an experimentally validated model and modeling human mutations, we discover that monogenic forms of diabetes may be remedied by a reduction in electrical coupling between cells; either alone or in conjunction with pharmacological intervention. Knowledge of biological systems in general is also helped by these findings, in that small changes to cellular elements may lead to major disruptions in the overall system. This may then be overcome by allowing the system components to function independently in the presence of dysfunction to individual cells.
Collapse
Affiliation(s)
- Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wang Y, Yu L, Cui N, Jin X, Zhu D, Jiang C. Differential sensitivities of the vascular K(ATP) channel to various PPAR activators. Biochem Pharmacol 2013; 85:1495-503. [PMID: 23500542 DOI: 10.1016/j.bcp.2013.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
Several agonists of the peroxisome proliferator-activated receptors (PPARs) are currently used for the treatment of metabolic disorders including diabetes. We have recently shown that one of them, Rosiglitazone, inhibits the vascular ATP-sensitive K⁺ (K(ATP)) channel and compromises the coronary vasodilation by the β-adrenoceptor agonist. Here, we show evidence for the channel inhibition by various PPAR agonists, information that may be useful for finding new therapeutical agents with less cardiovascular side-effects and more selective K(ATP) channel blockers targeting at the K(ir)6.1 subunit. Structural comparison of these PPAR agonists may shed insight into the critical chemical groups for the channel inhibition. K(ir)6.1/SUR2B channel was expressed in HEK293 cells and studied in whole-cell voltage clamp. The K(ir)6.1/SUR2B channel was strongly inhibited by several PPAR(γ) agonists with potencies similar to, or higher than, that of Rosiglitazone, while other PPAR(γ) agonists barely inhibited the channel. The K(ir)6.1/SUR2B channel was also inhibited by PPAR(α) and PPAR(β/δ) agonists with intermediate potencies. The structure necessary for the channel inhibition appears to include the thiazole linked to an aromatic or furan ring. Additions of side groups such as small aliphatic chain increased the potency for channel inhibition, while additions of aromatic rings reduced it. These results indicate that the PPAR(γ) agonists with weak K(ATP) channel inhibition may be potential candidates as therapeutical agents, and those with strong channel inhibition may be used as selective K(ATP) channel blockers. The structural information of the PPAR agonists may be useful for the development of new therapeutical modalities with less cardiovascular side-effects.
Collapse
Affiliation(s)
- Yingji Wang
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | | | | | |
Collapse
|
5
|
Jin X, Yu L, Wu Y, Zhang S, Shi Z, Chen X, Yang Y, Zhang X, Jiang C. S-Glutathionylation underscores the modulation of the heteromeric Kir4.1-Kir5.1 channel in oxidative stress. J Physiol 2012; 590:5335-48. [PMID: 22907060 DOI: 10.1113/jphysiol.2012.236885] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Kir4.1 channel is expressed in the brainstem, retina and kidney where it acts on K(+) transportation and pH-dependent membrane potential regulation. Its heteromerization with Kir5.1 leads to K(+) currents with distinct properties such as single-channel conductance, rectification, pH sensitivity and phosphorylation modulation. Here we show that Kir5.1 also enables S-glutathionylation to the heteromeric channel. Expressed in HEK cells, an exposure to the oxidant H(2)O(2) or diamide produced concentration-dependent inhibitions of the whole-cell Kir4.1-Kir5.1 currents. In inside-out patches, currents were inhibited strongly by a combination of diamide/GSH or H(2)O(2)/GSH but not by either alone. The currents were also suppressed by GSSG and the thiol oxidants pyridine disulfides (PDSs), suggesting S-glutathionylation. In contrast, none of the exposures had significant effects on the homomeric Kir4.1 channel. Cys158 in the TM2 helix of Kir5.1 was critical for the S-glutathionylation, which was accessible to intracellular but not extracellular oxidants. Site-directed mutagenesis of this residue (C158A or C158T) abolished the Kir4.1-Kir5.1 current modulation by oxidants, and eliminated almost completely the biochemical interaction of Kir5.1 with GSH. In tandem Kir4.1-Kir5.1 constructs, the channel with a single Cys158 was inhibited to the same degree as the wild-type channel, suggesting that one glutathione moiety is sufficient to block the channel. Consistent with the location of Cys158, GSSG inhibited the channel only when the channel was open, indicating that the channel inhibition was state dependent. The finding that the heteromeric Kir4.1-Kir5.1 channel but not the homomeric Kir4.1 is subject to the S-glutathionylation thus suggests a novel Kir4.1-Kir5.1 channel modulation mechanism that is likely to occur in oxidative stress.
Collapse
Affiliation(s)
- Xin Jin
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302-4010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Modeling K(ATP) channel gating and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:7-19. [PMID: 18983870 DOI: 10.1016/j.pbiomolbio.2008.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to plasmalemmal potassium fluxes in a variety of cell types. The activity of these channels is primarily determined by intracellular adenosine nucleotides, which have both inhibitory and stimulatory effects. The role of K(ATP) channels has been studied most extensively in pancreatic beta-cells, where they link glucose metabolism to insulin secretion. Many mutations in K(ATP) channel subunits (Kir6.2, SUR1) have been identified that cause either neonatal diabetes or congenital hyperinsulinism. Thus, a mechanistic understanding of K(ATP) channel behavior is necessary for modeling beta-cell electrical activity and insulin release in both health and disease. Here, we review recent advances in the K(ATP) channel structure and function. We focus on the molecular mechanisms of K(ATP) channel gating by adenosine nucleotides, phospholipids and sulphonylureas and consider the advantages and limitations of various mathematical models of macroscopic and single-channel K(ATP) currents. Finally, we outline future directions for the development of more realistic models of K(ATP) channel gating.
Collapse
|
8
|
Abstract
ATP-sensitive potassium (KATP) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 μM.
Collapse
Affiliation(s)
- Tim J Craig
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
9
|
Shi Y, Cui N, Shi W, Jiang C. A short motif in Kir6.1 consisting of four phosphorylation repeats underlies the vascular KATP channel inhibition by protein kinase C. J Biol Chem 2007; 283:2488-94. [PMID: 18048350 DOI: 10.1074/jbc.m708769200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular ATP-sensitive K(+) channels are inhibited by multiple vasoconstricting hormones via the protein kinase C (PKC) pathway. However, the molecular substrates for PKC phosphorylation remain unknown. To identify the PKC sites, Kir6.1/SUR2B and Kir6.2/SUR2B were expressed in HEK293 cells. Following channel activation by pinacidil, the catalytic fragment of PKC inhibited the Kir6.1/SUR2B currents but not the Kir6.2/SUR2B currents. Phorbol 12-myristate 13-acetate (a PKC activator) had similar effects. Using Kir6.1-Kir6.2 chimeras, two critical protein domains for the PKC-dependent channel inhibition were identified. The proximal N terminus of Kir6.1 was necessary for channel inhibition. Because there was no PKC phosphorylation site in the N-terminal region, our results suggest its potential involvement in channel gating. The distal C terminus of Kir6.1 was crucial where there are several consensus PKC sites. Mutation of Ser-354, Ser-379, Ser-385, Ser-391, or Ser-397 to nonphosphorylatable alanine reduced PKC inhibition moderately but significantly. Combined mutations of these residues had greater effects. The channel inhibition was almost completely abolished when 5 of them were jointly mutated. In vitro phosphorylation assay showed that 4 of the serine residues were necessary for the PKC-dependent (32)P incorporation into the distal C-terminal peptides. Thus, a motif containing four phosphorylation repeats is identified in the Kir6.1 subunit underlying the PKC-dependent inhibition of the Kir6.1/SUR2B channel. The presence of the phosphorylation motif in Kir6.1, but not in its close relative Kir6.2, suggests that the vascular K(ATP) channel may have undergone evolutionary optimization, allowing it to be regulated by a variety of vasoconstricting hormones and neurotransmitters.
Collapse
Affiliation(s)
- Yun Shi
- Department of Biology, Georgia State University, 33 Gilmer Street, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|