1
|
Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Bolzinger MA. Inorganic ions in the skin: Allies or enemies? Int J Pharm 2020; 591:119991. [PMID: 33091552 DOI: 10.1016/j.ijpharm.2020.119991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.
Collapse
Affiliation(s)
- Małgorzata Tarnowska
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Stéphanie Briançon
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Yves Chevalier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France.
| |
Collapse
|
2
|
Chung S, Kim YH, Joeng JH, Ahn DS. Transient receptor potential c4/5 like channel is involved in stretch-induced spontaneous uterine contraction of pregnant rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:503-8. [PMID: 25598665 PMCID: PMC4296040 DOI: 10.4196/kjpp.2014.18.6.503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/23/2022]
Abstract
Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by 1µM lanthanides (a potent TRPC4/5 stimulator) and suppressed by 10µM 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide (1µM) and suppressed by 2-APB (10µM), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.
Collapse
Affiliation(s)
- Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji-Hyun Joeng
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Duck-Sun Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
3
|
Opening of chloride channels by 1α,25-dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. J Invest Dermatol 2012; 133:776-782. [PMID: 23014341 DOI: 10.1038/jid.2012.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UVR produces vitamin D in skin, which is hydroxylated locally to 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). 1,25(OH)(2)D(3) protects skin cells against UVR-induced DNA damage, including thymine dimers, but the mechanism is unknown. As DNA repair is inhibited by nitric oxide (NO) products but facilitated by p53, we examined whether 1,25(OH)(2)D(3) altered the expression of nitrotyrosine, a product of NO, or p53 after UVR in human keratinocytes. 1,25(OH)(2)D(3) and the nongenomic agonist 1α,25-dihydroxylumisterol(3) reduced nitrotyrosine 16 hours after UVR, detected by a sensitive whole-cell ELISA. p53 was enhanced after UVR, and this was further augmented in the presence of 1,25(OH)(2)D(3). DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a chloride channel blocker previously shown to prevent 1,25(OH)(2)D(3)-induced chloride currents in osteoblasts, had no effect on thymine dimers on its own but prevented the 1,25(OH)(2)D(3)-induced protection against thymine dimers. Independent treatment with DIDS, at concentrations that had no effect on thymine dimers, blocked UVR-induced upregulation of p53. In contrast, reduction of nitrotyrosine remained in keratinocytes treated with 1,25(OH)(2)D(3) and DIDS at concentrations shown to block decreases in post-UVR thymine dimers. These results suggest that 1,25(OH)(2)D(3)-induced chloride currents help protect from UVR-induced thymine dimers, but further increases in p53 or reductions of nitrotyrosine by 1,25(OH)(2)D(3) are unlikely to contribute substantially to this protection.
Collapse
|
4
|
Raoux M, Azorin N, Colomban C, Rivoire S, Merrot T, Delmas P, Crest M. Chemicals inducing acute irritant contact dermatitis mobilize intracellular calcium in human keratinocytes. Toxicol In Vitro 2012; 27:402-8. [PMID: 22906572 DOI: 10.1016/j.tiv.2012.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 01/30/2023]
Abstract
Intracellular Ca(2+) increase is a common feature of multiple cellular pathways associated with receptor and channel activation, mediator secretion and gene regulation. We investigated the possibility of using this Ca(2+) signal as a biomarker for a reaction to chemical irritants of normal human keratinocytes (NHK) in submerged primary cell culture. We tested 14 referenced chemical compounds classified as strong (seven), weak (four) or non- (three) irritants in acute irritant contact dermatitis. We found that the strong irritant compounds tested at 20-40 mM induced an intracellular Ca(2+) increase measurable by spectrofluorimetry in an automated test. Weak and non-irritant compounds however did not increase intracellular Ca(2+) concentration. We further investigated the mechanisms by which the amine heptylamine, classified as a R34 corrosive compound, increases intracellular Ca(2+). Heptylamine (20mM) induced an ATP release that persisted in the absence of intra- and extra-cellular Ca(2+). In addition, we found that this ATP activates NHK purinergic receptors that subsequently cause the increase in intracellular Ca(2+) from sarcoplasmic reticular stores. We conclude that measuring the intracellular Ca(2+) concentration in NHK is a suitable and easy way of determining any potential reaction to soluble chemical compounds.
Collapse
Affiliation(s)
- Matthieu Raoux
- Université de la Méditerranée, Centre National de la Recherche Scientifique UMR 6231, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Azorin N, Raoux M, Rodat-Despoix L, Merrot T, Delmas P, Crest M. ATP signalling is crucial for the response of human keratinocytes to mechanical stimulation by hypo-osmotic shock. Exp Dermatol 2011; 20:401-7. [PMID: 21355886 DOI: 10.1111/j.1600-0625.2010.01219.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Touch is detected through receptors located in the skin and the activation of channels in sensory nerve fibres. Epidermal keratinocytes themselves, however, may sense mechanical stimulus and contribute to skin sensation. Here, we showed that the mechanical stimulation of human keratinocytes by hypo-osmotic shock releases adenosine triphosphate (ATP) and increases intracellular calcium. We demonstrated that the release of ATP was found to be calcium independent because emptying the intracellular calcium stores did not cause ATP release; ATP release was still observed in the absence of external calcium and it persisted on chelating cytosolic calcium. On the other hand, the released ATP activated purinergic receptors and mobilized intracellular calcium stores. The resulting depletion of stored calcium led to the activation of capacitative calcium entry. Increase in cytosolic calcium concentration was blocked by the purinergic receptor blocker suramin, phospholipase C inhibitor and apyrase, which hydrolyses ATP. Collectively, our data demonstrate that human keratinocytes are mechanically activated by hypo-osmotic shock, leading first to the release of ATP, which in turn stimulates purinergic receptors, resulting in the mobilization of intracellular calcium and capacitative calcium entry. These results emphasize the crucial role of ATP signalling in the transduction of mechanical stimuli in human keratinocytes.
Collapse
Affiliation(s)
- Nathalie Azorin
- Université de la Méditerranée, Centre National de la Recherche Scientifique (CNRS) UMR6231, Marseille, France
| | | | | | | | | | | |
Collapse
|
6
|
Raoux M, Rodat-Despoix L, Azorin N, Giamarchi A, Hao J, Maingret F, Crest M, Coste B, Delmas P. Mechanosensor Channels in Mammalian Somatosensory Neurons. SENSORS 2007; 7:1667-1682. [PMID: 28903189 PMCID: PMC3841838 DOI: 10.3390/s7091667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 08/31/2007] [Indexed: 12/11/2022]
Abstract
Mechanoreceptive sensory neurons innervating the skin, skeletal muscles and viscera signal both innocuous and noxious information necessary for proprioception, touch and pain. These neurons are responsible for the transduction of mechanical stimuli into action potentials that propagate to the central nervous system. The ability of these cells to detect mechanical stimuli impinging on them relies on the presence of mechanosensitive channels that transduce the external mechanical forces into electrical and chemical signals. Although a great deal of information regarding the molecular and biophysical properties of mechanosensitive channels in prokaryotes has been accumulated over the past two decades, less is known about the mechanosensitive channels necessary for proprioception and the senses of touch and pain. This review summarizes the most pertinent data on mechanosensitive channels of mammalian somatosensory neurons, focusing on their properties, pharmacology and putative identity.
Collapse
Affiliation(s)
- Matthieu Raoux
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Lise Rodat-Despoix
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Nathalie Azorin
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Aurélie Giamarchi
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Jizhe Hao
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - François Maingret
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Marcel Crest
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Bertrand Coste
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| | - Patrick Delmas
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique UMR 6150, Université de la Méditerranée, Marseille, France.
| |
Collapse
|