1
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|
2
|
Lulli M, Cammalleri M, Granucci I, Witort E, Bono S, Di Gesualdo F, Lupia A, Loffredo R, Casini G, Dal Monte M, Capaccioli S. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression. Biochem Biophys Res Commun 2017; 490:977-983. [PMID: 28666875 DOI: 10.1016/j.bbrc.2017.06.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023]
Abstract
Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Irene Granucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Ewa Witort
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Silvia Bono
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Federico Di Gesualdo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Antonella Lupia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Rosa Loffredo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
3
|
Ghisolfi L, Calastretti A, Franzi S, Canti G, Donnini M, Capaccioli S, Nicolin A, Bevilacqua A. B cell lymphoma (Bcl)-2 protein is the major determinant in bcl-2 adenine-uridine-rich element turnover overcoming HuR activity. J Biol Chem 2009; 284:20946-55. [PMID: 19520857 DOI: 10.1074/jbc.m109.023721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the 3'-untranslated region, the destabilizing adenine-uridine (AU)-rich elements (AREs) control the expression of several transcripts through interactions with ARE-binding proteins (AUBPs) and RNA degradation machinery. Although the fundamental role for AUBPs and associated factors in eliciting ARE-dependent degradation of cognate mRNAs has been recently highlighted, the molecular mechanisms underlying the specific regulation of individual mRNA turnover have not yet been fully elucidated. Here we focused on the post-transcriptional regulation of bcl-2 mRNA in human cell lines under different conditions and genetic backgrounds. In the context of an AUBPs silencing approach, HuR knockdown reduced the expression of endogenous bcl-2, whereas unexpectedly, a bcl-2 ARE-reporter transcript increased significantly, suggesting that HuR expression has opposite effects on endogenous and ectopic bcl-2 ARE. Moreover, evidence was provided for the essential, specific and dose-dependent role of the Bcl-2 protein in regulating the decay kinetics of its own mRNA, as ascertained by a luciferase reporter system. Altogether, the data support a model whereby the Bcl-2 protein is the major determinant of its own ARE-dependent transcript half-life in living cells and its effect overcomes the activity of ARE-binding proteins.
Collapse
Affiliation(s)
- Laura Ghisolfi
- Department of Pharmacology, Università degli Studi di Milano, 20129 Milan
| | | | | | | | | | | | | | | |
Collapse
|