1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Chojnacka W, Teng J, Kim JJ, Jensen AA, Hibbs RE. Structural insights into GABA A receptor potentiation by Quaalude. Nat Commun 2024; 15:5244. [PMID: 38898000 PMCID: PMC11187190 DOI: 10.1038/s41467-024-49471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.
Collapse
Affiliation(s)
- Weronika Chojnacka
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jeong Joo Kim
- Protein Structure and Function, Loxo@Lilly, Louisville, CO, USA
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bhave K, Forman SA. Substituted Cysteine Modification and Protection with n-Alkyl-MTS Reagents Quantifies Steric Changes Induced by a Mutation in Anesthetic Binding Sites on GABA Type A Receptors. Mol Pharmacol 2023; 104:266-274. [PMID: 37586749 PMCID: PMC10658906 DOI: 10.1124/molpharm.123.000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Multiple approaches, including cryogenic electron microscopy (cryo-EM), indicate that the anesthetics etomidate and propofol modulate α1β2/3γ2 GABAA receptors by binding in overlapping transmembrane inter-subunit sites near βM286 and αL232 sidechains. High-precision approaches in functional receptors are needed for comparisons with cryo-EM. We previously used substituted cysteine modification and protection (SCAMP) with n-alkyl-methanethiosulfonate (MTS) reagents and electrophysiology in α1β3M286Cγ2L receptors to estimate the distance from etomidate to β3M286 with precision near 1.3 Å. Here, we address three more aims using this approach: (i) SCAMP with etomidate was tested in α1L232Cβ3γ2L receptors; (ii) studies in α1L232Wβ3M286Cγ2L receptors assessed whether α1L232W displaces etomidate relative to β3M286C; and (iii) results with propofol were compared with those with etomidate. Voltage-clamp electrophysiology in Xenopus oocytes was used to assess persistent functional changes after exposing cysteine-substituted receptors to methyl-MTS through n-decyl-MTS. Overlap of modified cysteine sidechains with bound anesthetic was inferred when anesthetic co-application with alkyl-MTS reagent blocked the development of persistent effects. In α1L232Cβ3γ2L receptors, only pentyl-MTS and hexyl-MTS induced persistent effects that were unaltered by etomidate co-application, precluding a direct estimate of intermolecular distance. In α1L232Wβ3M286Cγ2L receptors, sidechain overlap with bound etomidate was inferred for modifications with ethyl-MTS through n-pentyl-MTS, with unambiguous cut-on and cut-off. Comparison with results in α1β3M286Cγ2L reveals that α1L232W, which increases maximal sidechain length by 2.1 Å, displaces etomidate closer to β3M286C by about 1.3 Å. Propofol results largely mirrored those with etomidate. These findings indicate that both etomidate and propofol bind within 1 Å of α1L232, consistent with cryo-EM structures. SIGNIFICANCE STATEMENT: We combined electrophysiology, cysteine substitutions, and n-alkyl-methanethiosulfonate modifiers in functional GABAA receptors to enable precise estimates of the distance between β3M286C sidechains and anesthetics (etomidate and propofol) bound in transmembrane β+/α- inter-subunit pockets. Comparing results in α1β3M286Cγ2L and α1L232Wβ3M286Cγ2L receptors reveals that α1L232W mutations displace both anesthetics toward β3M286C, indicating that these anesthetics bind within 1 Å of the α1L232 sidechain in functional receptors, consistent with cryogenic electron microscopy structures derived under nonphysiologic conditions.
Collapse
Affiliation(s)
- Kieran Bhave
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Arias HR, Germann AL, Pierce SR, Sakamoto S, Ortells MO, Hamachi I, Akk G. Modulation of the mammalian GABA A receptor by type I and type II positive allosteric modulators of the α7 nicotinic acetylcholine receptor. Br J Pharmacol 2022; 179:5323-5337. [PMID: 36082615 PMCID: PMC9669183 DOI: 10.1111/bph.15948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Positive allosteric modulators of the α7 nicotinic acetylcholine (nACh) receptor (α7-PAMs) possess promnesic and procognitive properties and have potential in the treatment of cognitive and psychiatric disorders including Alzheimer's disease and schizophrenia. Behavioural studies in rodents have indicated that α7-PAMs can also produce antinociceptive and anxiolytic effects that may be associated with positive modulation of the GABAA receptor. The overall goal of this study was to investigate the modulatory actions of selected α7-PAMs on the GABAA receptor. EXPERIMENTAL APPROACH We employed a combination of cell fluorescence imaging, electrophysiology, functional competition and site-directed mutagenesis to investigate the functional and structural mechanisms of modulation of the GABAA receptor by three representative α7-PAMs. KEY RESULTS We show that the α7-PAMs at micromolar concentrations enhance the apparent affinity of the GABAA receptor for the transmitter and potentiate current responses from the receptor. The compounds were equi-effective at binary αβ and ternary αβγ GABAA receptors. Functional competition and site-directed mutagenesis indicate that the α7-PAMs bind to the classic anaesthetic binding sites in the transmembrane region in the intersubunit interfaces, which results in stabilization of the active state of the receptor. CONCLUSION AND IMPLICATIONS We conclude that the tested α7-PAMs are micromolar-affinity, intermediate- to low-efficacy allosteric potentiators of the mammalian αβγ GABAA receptor. Given the similarities in the in vitro sensitivities of the α7 nACh and α1β2γ2L GABAA receptors to α7-PAMs, we propose that doses used to produce nACh receptor-mediated behavioural effects in vivo are likely to modulate GABAA receptor function.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Allison L. Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Spencer R. Pierce
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Arias HR, Borghese CM, Germann AL, Pierce SR, Bonardi A, Nocentini A, Gratteri P, Thodati TM, Lim NJ, Adron Harris R, Akk G. (+)-Catharanthine potentiates the GABA A receptor by binding to a transmembrane site at the β(+)/α(-) interface near the TM2-TM3 loop. Biochem Pharmacol 2022; 199:114993. [PMID: 35304861 PMCID: PMC9178925 DOI: 10.1016/j.bcp.2022.114993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
(+)-Catharanthine, a coronaridine congener, potentiates the γ-aminobutyric acid type A receptor (GABAAR) and induces sedation through a non-benzodiazepine mechanism, but the specific site of action and intrinsic mechanism have not beendefined. Here, we describe GABAAR subtype selectivity and location of the putative binding site for (+)-catharanthine using electrophysiological, site-directed mutagenesis, functional competition, and molecular docking experiments. Electrophysiological and in silico experiments showed that (+)-catharanthine potentiates the responses to low, subsaturating GABA at β2/3-containing GABAARs 2.4-3.5 times more efficaciously than at β1-containing GABAARs. The activity of (+)-catharanthine is reduced by the β2(N265S) mutation that decreases GABAAR potentiation by loreclezole, but not by the β3(M286C) or α1(Q241L) mutations that reduce receptor potentiation by R(+)-etomidate or neurosteroids, respectively. Competitive functional experiments indicated that the binding site for (+)-catharanthine overlaps that for loreclezole, but not those for R(+)-etomidate or potentiating neurosteroids. Molecular docking experiments suggested that (+)-catharanthine binds at the β(+)/α(-) intersubunit interface near the TM2-TM3 loop, where it forms H-bonds with β2-D282 (TM3), β2-K279 (TM2-TM3 loop), and β2-N265 and β2-R269 (TM2). Site-directed mutagenesis experiments supported the in silico results, demonstrating that the K279A and D282A substitutions, that lead to a loss of H-bonding ability of the mutated residue, and the N265S mutation, impair the gating efficacy of (+)-catharanthine. We infer that (+)-catharanthine potentiates the GABAAR through several H-bond interactions with a binding site located in the β(+)/α(-) interface in the transmembrane domain, near the TM2-TM3 loop, where it overlaps with loreclezole binding site.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA.
| | - Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| | - Allison L Germann
- Department of Anesthesiology, the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Spencer R Pierce
- Department of Anesthesiology, the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Alessandro Bonardi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Florence, Italy.
| | - Alessio Nocentini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Florence, Italy.
| | - Paola Gratteri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Florence, Italy.
| | - Thanvi M Thodati
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| | - Natalie J Lim
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| | - Gustav Akk
- Department of Anesthesiology, the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Kono M, Ozoe F, Asahi M, Ozoe Y. State-dependent inhibition of GABA receptor channels by the ectoparasiticide fluralaner. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105008. [PMID: 35082031 DOI: 10.1016/j.pestbp.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) are ligand-gated Cl- channels, which cause an influx of Cl- that inhibits excitation in postsynaptic cells upon activation. GABARs are important targets for drugs and pest control chemicals. We previously reported that the isoxazoline ectoparasiticide fluralaner inhibits GABA-induced currents in housefly (Musca domestica) GABARs by binding to the putative binding site in the transmembrane subunit interface. In the present study, we investigated whether fluralaner inhibits the GABA response in the GABAR activated state, the resting state, or both, using two-electrode voltage clamp electrophysiology protocols. We found that inhibition progresses over time to steady-state levels by repeated short applications of GABA during fluralaner perfusion. The GABA response was not impaired by fluralaner treatment in the GABAR resting state. However, once inhibited, the GABA response was not restored by repeated applications of GABA. These findings suggest that fluralaner might reach the binding site of the activated conformation of GABARs in a stepwise fashion and tightly bind to it.
Collapse
Affiliation(s)
- Miku Kono
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Miho Asahi
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka, Saitama 349-0294, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
7
|
Fantasia RJ, Nourmahnad A, Halpin E, Forman SA. Substituted Cysteine Modification and Protection with n-Alkyl- Methanethiosulfonate Reagents Yields a Precise Estimate of the Distance between Etomidate and a Residue in Activated GABA Type A Receptors. Mol Pharmacol 2021; 99:426-434. [PMID: 33766924 PMCID: PMC9354027 DOI: 10.1124/molpharm.120.000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
The anesthetic etomidate modulates synaptic α1β2/3γ2 GABAA receptors via binding sites located in transmembrane β+/α- interfaces. Various approaches indicate that etomidate binds near β2/3M286 side chains, including recent cryogenic electron microscopy images in α1β2γ2L receptors under nonphysiologic conditions with ∼3.5-Å resolution. We hypothesized that substituted cysteine modification and protection experiments using variably sized n-alkyl-methanethiosulfonate (MTS) reagents could precisely estimate the distance between bound etomidate and β3M286 side chains in activated functional receptors. Using voltage-clamp electrophysiology in Xenopus oocytes expressing α1β3M286Cγ2L GABAA receptors, we measured functional changes after exposing GABA-activated receptors to n-alkyl-MTS reagents, from methyl-MTS to n-decyl-MTS. Based on previous studies using a large sulfhydryl reagent, we anticipated that cysteine modifications large enough to overlap etomidate sites would cause persistently increased GABA sensitivity and decreased etomidate modulation and that etomidate would hinder these modifications, reducing effects. Based on altered GABA or etomidate sensitivity, ethyl-MTS and larger n-alkyl-MTS reagents modified GABA-activated α1β3M286Cγ2L GABAA receptors. Receptor modification by n-propyl-MTS or larger reagents caused persistently increased GABA sensitivity and decreased etomidate modulation. Receptor-bound etomidate blocked β3M286C modification by n-propyl-MTS, n-butyl-MTS, and n-hexyl-MTS. In contrast, GABA sensitivity was unaltered by receptor exposure to methyl-MTS or ethyl-MTS, and ethyl-MTS modification uniquely increased etomidate modulation. These results reveal a "cut-on" between ethyl-MTS and n-propyl-MTS, from which we infer that -S-(n-propyl) is the smallest β3M286C appendage that overlaps with etomidate sites. Molecular models of the native methionine and -S-ethyl and -S-(n-propyl) modified cysteines suggest that etomidate is located between 1.7 and 3.0 Å from the β3M286 side chain. SIGNIFICANCE STATEMENT: Precise spatial relationships between drugs and their receptor sites are essential for mechanistic understanding and drug development. This study combined electrophysiology, a cysteine substitution, and n-alkyl-methanethiosulfonate modifiers, creating a precise molecular ruler to estimate the distance between a α1β3γ2L GABA type A receptor residue and etomidate bound in the transmembrane β+/α- interface.
Collapse
Affiliation(s)
- Ryan J Fantasia
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Wang PF, Jensen AA, Bunch L. From Methaqualone and Beyond: Structure-Activity Relationship of 6-, 7-, and 8-Substituted 2,3-Diphenyl-quinazolin-4(3 H)-ones and in Silico Prediction of Putative Binding Modes of Quinazolin-4(3 H)-ones as Positive Allosteric Modulators of GABA A Receptors. ACS Chem Neurosci 2020; 11:4362-4375. [PMID: 33170625 DOI: 10.1021/acschemneuro.0c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methaqualone (2-methyl-3-(o-tolyl)-quinazolin-4(3H)-one, MTQ) is a moderately potent positive allosteric modulator (PAM) of GABAA receptors (GABAARs). In a previous structure-activity relationship (SAR) study probing the importance of 2- and 3-substituents in the quinazolin-4(3H)-one scaffold, several potent GABAAR PAMs were identified, including 2,3-diphenylquinazolin-4(3H)-one (PPQ) and 3-(2-chlorophenyl)-2-phenylquinazolin-4(3H)-one (Cl-PPQ). Here, PPQ was applied as lead in a SAR study of 6-, 7-, and 8-substituents in the quinazolin-4(3H)-one by synthesis and functional characterization of 36 PPQ analogs at various GABAAR subtypes. While none of the new analogs were significantly more potent than PPQ or displayed pronounced subtype selectivity across the GABAARs tested, several interesting SAR observations were extracted from the study. In an in silico study, the putative binding modes of MTQ, PPQ, and Cl-PPQ in the transmembrane β2(+)/α1(-) interface of the α1β2γ2S GABAAR were predicted. Several plausible binding modes were identified for the three PAMs, and rationalization of the molecular basis for their different modulatory potencies was attempted.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 400044, P.R. China
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Sugasawa Y, Cheng WW, Bracamontes JR, Chen ZW, Wang L, Germann AL, Pierce SR, Senneff TC, Krishnan K, Reichert DE, Covey DF, Akk G, Evers AS. Site-specific effects of neurosteroids on GABA A receptor activation and desensitization. eLife 2020; 9:55331. [PMID: 32955433 PMCID: PMC7532004 DOI: 10.7554/elife.55331] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study examines how site-specific binding to three identified neurosteroid-binding sites in the α1β3 GABAA receptor (GABAAR) contributes to neurosteroid allosteric modulation. We found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3β-epimer epi-allopregnanolone, binds to the canonical β3(+)–α1(-) intersubunit site that mediates receptor activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to intrasubunit sites in the β3 subunit, promoting receptor desensitization and the α1 subunit promoting effects that vary between neurosteroids. Two neurosteroid analogues with diazirine moieties replacing the 3-hydroxyl (KK148 and KK150) bind to all three sites, but do not potentiate GABAAR currents. KK148 is a desensitizing agent, whereas KK150 is devoid of allosteric activity. These compounds provide potential chemical scaffolds for neurosteroid antagonists. Collectively, these data show that differential occupancy and efficacy at three discrete neurosteroid-binding sites determine whether a neurosteroid has potentiating, inhibitory, or competitive antagonist activity on GABAARs.
Collapse
Affiliation(s)
- Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - John R Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Lei Wang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Allison L Germann
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Spencer R Pierce
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Thomas C Senneff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| | - David E Reichert
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Radiology, Washington University in St. Louis, St. Louis, United States
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States.,Department of Psychiatry, Washington University in St. Louis, St. Louis, United States
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Alex S Evers
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
10
|
Germann AL, Steinbach JH, Akk G. Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties. Curr Neuropharmacol 2020; 17:843-851. [PMID: 30520374 PMCID: PMC7052843 DOI: 10.2174/1570159x17666181206092418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
The co-agonist concerted transition model is a simple and practical solution to analyze various aspects of GABAA receptor function. Several model-based predictions have been verified experimentally in previous reports. We review here the practical implications of the model and demonstrate how it enables simplification of the experimental procedure and data analysis to characterize the effects of mutations or properties of novel ligands. Specifically, we show that the value of EC50 and the magnitude of current response are directly affected by basal activity, and that coapplication of a background agonist acting at a distinct site or use of a gain-of-function mutation can be employed to enable studies of weak activators or mutated receptors with impaired gating. We also show that the ability of one GABAergic agent to potentiate the activity elicited by another is a computable value that depends on the level of constitutive activity of the ion channel and the ability of each agonist to directly activate the receptor. Significantly, the model accurately accounts for situations where the paired agonists interact with the same site compared to distinct sites on the receptor.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Etomidate and Etomidate Analog Binding and Positive Modulation of γ-Aminobutyric Acid Type A Receptors: Evidence for a State-dependent Cutoff Effect. Anesthesiology 2019; 129:959-969. [PMID: 30052529 DOI: 10.1097/aln.0000000000002356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Naphthalene-etomidate, an etomidate analog containing a bulky phenyl ring substituent group, possesses very low γ-aminobutyric acid type A (GABAA) receptor efficacy and acts as an anesthetic-selective competitive antagonist. Using etomidate analogs containing phenyl ring substituents groups that range in volume, we tested the hypothesis that this unusual pharmacology is caused by steric hindrance that reduces binding to the receptor's open state. METHODS The positive modulatory potencies and efficacies of etomidate and phenyl ring-substituted etomidate analogs were electrophysiology defined in oocyte-expressed α1β3γ2L GABAA receptors. Their binding affinities to the GABAA receptor's two classes of transmembrane anesthetic binding sites were assessed from their abilities to inhibit receptor labeling by the site-selective photolabels [H]azi-etomidate and tritiated R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS The positive modulatory activities of etomidate and phenyl ring-substituted etomidate analogs progressively decreased with substituent group volume, reflecting significant decreases in both potency (P = 0.005) and efficacy (P < 0.0001). Affinity for the GABAA receptor's two β - α anesthetic binding sites similarly decreased with substituent group volume (P = 0.003), whereas affinity for the receptor's α - β/γ - β sites did not (P = 0.804). Introduction of the N265M mutation, which is located at the β - α binding sites and renders GABAA receptors etomidate-insensitive, completely abolished positive modulation by naphthalene-etomidate. CONCLUSIONS Steric hindrance selectively reduces phenyl ring-substituted etomidate analog binding affinity to the two β - α anesthetic binding sites on the GABAA receptor's open state, suggesting that the binding pocket where etomidate's phenyl ring lies becomes smaller as the receptor isomerizes from closed to open.
Collapse
|
12
|
Szabo A, Nourmahnad A, Halpin E, Forman SA. Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant α1 β3 γ2L GABA A Receptors Indicates Selectivity and Crosstalk among Intersubunit Transmembrane Anesthetic Sites. Mol Pharmacol 2019; 95:408-417. [PMID: 30696720 PMCID: PMC6399575 DOI: 10.1124/mol.118.115048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022] Open
Abstract
Propofol, etomidate, and barbiturate anesthetics are allosteric coagonists at pentameric α1β3γ2 GABAA receptors, modulating channel activation via four biochemically established intersubunit transmembrane pockets. Etomidate selectively occupies the two β +/α - pockets, the barbiturate photolabel R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) occupies homologous α +/β - and γ +/β - pockets, and propofol occupies all four. Functional studies of mutations at M2-15' or M3-36' loci abutting these pockets provide conflicting results regarding their relative contributions to propofol modulation. We electrophysiologically measured GABA-dependent channel activation in α1β3γ2L or receptors with single M2-15' (α1S270I, β3N265M, and γ2S280W) or M3-36' (α1A291W, β3M286W, and γ2S301W) mutations, in the absence and presence of equipotent clinical range concentrations of etomidate, R-mTFD-MPAB, and propofol. Estimated open probabilities were calculated and analyzed using global two-state Monod-Wyman-Changeux models to derive log(d) parameters proportional to anesthetic-induced channel modulating energies (where d is the allosteric anesthetic shift factor). All mutations reduced the log(d) values for anesthetics occupying both abutting and nonabutting pockets. The Δlog(d) values [log(d, mutant) - log(d, wild type)] for M2-15' mutations abutting an anesthetic's biochemically established binding sites were consistently larger than the Δlog(d) values for nonabutting mutations, although this was not true for the M3-36' mutant Δlog(d) values. The sums of the anesthetic-associated Δlog(d) values for sets of M2-15' or M3-36' mutations were all much larger than the wild-type log(d) values. Mutant Δlog(d) values qualitatively reflect anesthetic site occupancy patterns. However, the lack of Δlog(d) additivity undermines quantitative comparisons of distinct site contributions to anesthetic modulation because the mutations impaired both abutting anesthetic binding effects and positive cooperativity between anesthetic binding sites.
Collapse
Affiliation(s)
- Andrea Szabo
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Structural basis of neurosteroid anesthetic action on GABA A receptors. Nat Commun 2018; 9:3972. [PMID: 30266951 PMCID: PMC6162318 DOI: 10.1038/s41467-018-06361-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are inhibitory pentameric ligand-gated ion channels in the brain. Many anesthetics and neurosteroids act through binding to the GABAAR transmembrane domain (TMD), but the structural basis of their actions is not well understood and no resting-state GABAAR structure has been determined. Here, we report crystal structures of apo and the neurosteroid anesthetic alphaxalone-bound desensitized chimeric α1GABAAR (ELIC-α1GABAAR). The chimera retains the functional and pharmacological properties of GABAARs, including potentiation, activation and desensitization by alphaxalone. The apo-state structure reveals an unconventional activation gate at the intracellular end of the pore. The desensitized structure illustrates molecular determinants for alphaxalone binding to an inter-subunit TMD site. These structures suggest a plausible signaling pathway from alphaxalone binding at the bottom of the TMD to the channel gate in the pore-lining TM2 through the TM1–TM2 linker. The study provides a framework to discover new GABAAR modulators with therapeutic potential. The anesthetic alphaxalone binds γ-aminobutyric acid type A receptors (GABAARs) that play an important role in regulating sensory processes. Here the authors present the structures of a α1GABAAR chimera in the resting state and in an alphaxalone-bound desensitized state, which might facilitate the development of new GABAAR modulators.
Collapse
|
14
|
Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABA A receptor in complex with GABA. eLife 2018; 7:39383. [PMID: 30044221 PMCID: PMC6086659 DOI: 10.7554/elife.39383] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Native GABAA receptors are heteromeric assemblies sensitive to many important drugs, from sedatives to anesthetics and anticonvulsant agents, with mutant forms of GABAA receptors implicated in multiple neurological diseases. Despite the profound importance of heteromeric GABAA receptors in neuroscience and medicine, they have proven recalcitrant to structure determination. Here we present the structure of a tri-heteromeric α1β1γ2SEM GABAA receptor in complex with GABA, determined by single particle cryo-EM at 3.1–3.8 Å resolution, elucidating molecular principles of receptor assembly and agonist binding. Remarkable N-linked glycosylation on the α1 subunit occludes the extracellular vestibule of the ion channel and is poised to modulate receptor assembly and perhaps ion channel gating. Our work provides a pathway to structural studies of heteromeric GABAA receptors and a framework for rational design of novel therapeutic agents.
Collapse
Affiliation(s)
- Swastik Phulera
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jie Yu
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Derek P Claxton
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Nate Yoder
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Craig Yoshioka
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
15
|
Alphaxalone Binds in Inner Transmembrane β+-α- Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2018; 128:338-351. [PMID: 29210709 DOI: 10.1097/aln.0000000000001978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neurosteroids like alphaxalone are potent anxiolytics, anticonvulsants, amnestics, and sedative-hypnotics, with effects linked to enhancement of γ-aminobutyric acid type A (GABAA) receptor gating in the central nervous system. Data locating neurosteroid binding sites on synaptic αβγ GABAA receptors are sparse and inconsistent. Some evidence points to outer transmembrane β-α interfacial pockets, near sites that bind the anesthetics etomidate and propofol. Other evidence suggests that steroids bind more intracellularly in β-α interfaces. METHODS The authors created 12 single-residue β3 cysteine mutations: β3T262C and β3T266C in β3-M2; and β3M283C, β3Y284C, β3M286C, β3G287C, β3F289C, β3V290C, β3F293C, β3L297C, β3E298C, and β3F301C in β3-M3 helices. The authors coexpressed α1 and γ2L with each mutant β3 subunit in Xenopus oocytes and electrophysiologically tested each mutant for covalent sulfhydryl modification by the water-soluble reagent para-chloromercuribenzenesulfonate. Then, the authors assessed whether receptor-bound alphaxalone, etomidate, or propofol blocked cysteine modification, implying steric hindrance. RESULTS Eleven mutant β3 subunits, when coexpressed with α1 and γ2L, formed functional channels that displayed varied sensitivities to the three anesthetics. Exposure to para-chloromercuribenzenesulfonate produced irreversible functional changes in ten mutant receptors. Protection by alphaxalone was observed in receptors with β3V290C, β3F293C, β3L297C, or β3F301C mutations. Both etomidate and propofol protected receptors with β3M286C or β3V290C mutations. Etomidate also protected β3F289C. In α1β3γ2L structural homology models, all these protected residues are located in transmembrane β-α interfaces. CONCLUSIONS Alphaxalone binds in transmembrane β-α pockets of synaptic GABAA receptors that are adjacent and intracellular to sites for the potent anesthetics etomidate and propofol.
Collapse
|
16
|
Germann AL, Shin DJ, Kuhrau CR, Johnson AD, Evers AS, Akk G. High Constitutive Activity Accounts for the Combination of Enhanced Direct Activation and Reduced Potentiation in Mutated GABA A Receptors. Mol Pharmacol 2018; 93:468-476. [PMID: 29439087 PMCID: PMC5878668 DOI: 10.1124/mol.117.111435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022] Open
Abstract
GABAA receptors activated by the transmitter GABA are potentiated by several allosterically acting drugs, including the intravenous anesthetic propofol. Propofol can also directly activate the receptor, albeit at higher concentrations. Previous functional studies have identified amino acid residues whose substitution reduces potentiation of GABA-activated receptors by propofol while enhancing the ability of propofol to directly activate the receptor. One interpretation of such observations is that the mutation has specific effects on the sites or processes involved in potentiation or activation. We show here that divergent effects on potentiation and direct activation can be mediated by increased constitutive open probability in the mutant receptor without any specific effect on the interactions between the allosteric drug and the receptor. By simulating GABAA receptor activity using the concerted transition model, we demonstrate that the predicted degree of potentiation is reduced as the level of constitutive activity increases. The model further predicts that a potentiating effect of an allosteric modulator is a computable value that depends on the level of constitutive activity, the amplitude of the response to the agonist, and the amplitude of the direct activating response to the modulator. Specific predictions were confirmed by electrophysiological data from the binary α1β3 and concatemeric ternary β2α1γ2L+β2α1 GABAA receptors. The corollaries of reduced potentiation due to increased constitutive activity are isobolograms that conform to simple additivity and a loss of separation between the concentration-response relationships for direct activation and potentiation.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Daniel J Shin
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Christina R Kuhrau
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Alexander D Johnson
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Alex S Evers
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (A.L.G., D.J.S., C.R.K., A.D.J., A.S.E., G.A.) and Taylor Family Institute for Innovative Psychiatric Research (A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|
18
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Shin DJ, Germann AL, Johnson AD, Forman SA, Steinbach JH, Akk G. Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABA A Receptors. Mol Pharmacol 2018; 93:178-189. [PMID: 29192122 PMCID: PMC5772375 DOI: 10.1124/mol.117.110403] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022] Open
Abstract
GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the β(M286) residue at the β"+"-α"-" interface in the transmembrane region and the β(Y143) residue near the β"-" surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used β2α1γ2L and β2α1 concatemeric constructs to determine the functional effects of the β(Y143W) and β(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at β(Y143) and β(M286).
Collapse
Affiliation(s)
- Daniel J Shin
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Allison L Germann
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Alexander D Johnson
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Stuart A Forman
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Joe Henry Steinbach
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| | - Gustav Akk
- Department of Anesthesiology (D.J.S., A.L.G., A.D.J., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (S.A.F.)
| |
Collapse
|
20
|
Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 2018; 147:153-169. [DOI: 10.1016/j.bcp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022]
|
21
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Longrange PCR-based next-generation sequencing in pharmacokinetics and pharmacodynamics study of propofol among patients under general anaesthesia. Sci Rep 2017; 7:15399. [PMID: 29133890 PMCID: PMC5684313 DOI: 10.1038/s41598-017-15657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
The individual response of patients to propofol results from the influence of genetic factors. However, the state of knowledge in this matter still remains insufficient. The aim of our study was to determine genetic predictors of variable pharmacokinetics and pharmacodynamics of propofol within selected 9 genes coding for propofol biotransformation enzymes, receptors and transporters. Our studies are the first extensive pharmaocgenetics research of propofol using high throughput sequencing technology. After the design and optimization of long range PCR-based next-generation sequencing experiment, we screened promoter and coding sequences of all genes analyzed among 87 Polish patients undergoing general anaesthesia with propofol. Initially we found that two variants, c.516 G > T in the CYP2B6 gene and c.2677 T > G in the ABCB1 gene, significantly correlate with propofol’s metabolic profile, however after Bonferroni correction the P-values were not statistically significant. Our results suggest, that variants within the CYP2B6 and ABCB1 genes correlate stronger with propofol’s metabolic profile compared to other 7 genes. CYP2B6 and ABCB1 variants can play a potentially important role in response to this anaesthetic and they are promising object for further studies.
Collapse
|
23
|
Forman SA, Miller KW. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 2017; 123:1263-1273. [PMID: 27167687 DOI: 10.1213/ane.0000000000001368] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.
Collapse
Affiliation(s)
- Stuart A Forman
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
24
|
Tryptophan and Cysteine Mutations in M1 Helices of α1β3γ2L γ-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site. Anesthesiology 2017; 125:1144-1158. [PMID: 27753644 DOI: 10.1097/aln.0000000000001390] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND γ-Aminobutyric acid type A (GABAA) receptors mediate important effects of intravenous general anesthetics. Photolabel derivatives of etomidate, propofol, barbiturates, and a neurosteroid get incorporated in GABAA receptor transmembrane helices M1 and M3 adjacent to intersubunit pockets. However, photolabels have not been consistently targeted at heteromeric αβγ receptors and do not form adducts with all contact residues. Complementary approaches may further define anesthetic sites in typical GABAA receptors. METHODS Two mutation-based strategies, substituted tryptophan sensitivity and substituted cysteine modification-protection, combined with voltage-clamp electrophysiology in Xenopus oocytes, were used to evaluate interactions between four intravenous anesthetics and six amino acids in M1 helices of α1, β3, and γ2L GABAA receptor subunits: two photolabeled residues, α1M236 and β3M227, and their homologs. RESULTS Tryptophan substitutions at α1M236 and positional homologs β3L231 and γ2L246 all caused spontaneous channel gating and reduced γ-aminobutyric acid EC50. Substituted cysteine modification experiments indicated etomidate protection at α1L232C and α1M236C, R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid protection at β3M227C and β3L231C, and propofol protection at α1M236C and β3M227C. No alphaxalone protection was evident at the residues the authors explored, and none of the tested anesthetics protected γ2I242C or γ2L246C. CONCLUSIONS All five intersubunit transmembrane pockets of GABAA receptors display similar allosteric linkage to ion channel gating. Substituted cysteine modification and protection results were fully concordant with anesthetic photolabeling at α1M236 and β3M227 and revealed overlapping noncongruent sites for etomidate and propofol in β-α interfaces and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid and propofol in α-β and γ-β interfaces. The authors' results identify the α-γ transmembrane interface as a potentially unique orphan modulator site.
Collapse
|
25
|
Savechenkov PY, Chiara DC, Desai R, Stern AT, Zhou X, Ziemba AM, Szabo AL, Zhang Y, Cohen JB, Forman SA, Miller KW, Bruzik KS. Synthesis and pharmacological evaluation of neurosteroid photoaffinity ligands. Eur J Med Chem 2017; 136:334-347. [PMID: 28505538 DOI: 10.1016/j.ejmech.2017.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Neuroactive steroids are potent positive allosteric modulators of GABAA receptors (GABAAR), but the locations of their GABAAR binding sites remain poorly defined. To discover these sites, we synthesized two photoreactive analogs of alphaxalone, an anesthetic neurosteroid targeting GABAAR, 11β-(4-azido-2,3,5,6-tetrafluorobenzoyloxy)allopregnanolone, (F4N3Bzoxy-AP) and 11-aziallopregnanolone (11-AziAP). Both photoprobes acted with equal or higher potency than alphaxalone as general anesthetics and potentiators of GABAAR responses, left-shifting the GABA concentration - response curve for human α1β3γ2 GABAARs expressed in Xenopus oocytes, and enhancing [3H]muscimol binding to α1β3γ2 GABAARs expressed in HEK293 cells. With EC50 of 110 nM, 11-AziAP is one the most potent general anesthetics reported. [3H]F4N3Bzoxy-AP and [3H]11-AziAP, at anesthetic concentrations, photoincorporated into α- and β-subunits of purified α1β3γ2 GABAARs, but labeling at the subunit level was not inhibited by alphaxalone (30 μM). The enhancement of photolabeling by 3H-azietomidate and 3H-mTFD-MPAB in the presence of either of the two steroid photoprobes indicates the neurosteroid binding site is different from, but allosterically related to, the etomidate and barbiturate sites. Our observations are consistent with two hypotheses. First, F4N3Bzoxy-AP and 11-aziAP bind to a high affinity site in such a pose that the 11-photoactivatable moiety, that is rigidly attached to the steroid backbone, points away from the protein. Second, F4N3Bzoxy-AP, 11-aziAP and other steroid anesthetics, which are present at very high concentration at the lipid-protein interface due to their high lipophilicity, act via low affinity sites, as proposed by Akk et al. (Psychoneuroendocrinology2009, 34S1, S59-S66).
Collapse
Affiliation(s)
- Pavel Y Savechenkov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL 60612-7231, USA
| | - David C Chiara
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Alexander T Stern
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Alexis M Ziemba
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Andrea L Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Yinghui Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Jonathan B Cohen
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA; Department of Biological Chemistry and Molecular Pharmacology, 220 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL 60612-7231, USA.
| |
Collapse
|
26
|
Eaton MM, Germann AL, Arora R, Cao LQ, Gao X, Shin DJ, Wu A, Chiara DC, Cohen JB, Steinbach JH, Evers AS, Akk G. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol. Curr Neuropharmacol 2017; 14:772-80. [PMID: 26830963 PMCID: PMC5050400 DOI: 10.2174/1570159x14666160202121319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/08/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Gustav Akk
- Department of Anesthesiology, Washington University, Campus Box 8054, 660 South Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
27
|
Chua HC, Chebib M. GABA A Receptors and the Diversity in their Structure and Pharmacology. ADVANCES IN PHARMACOLOGY 2017; 79:1-34. [DOI: 10.1016/bs.apha.2017.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Chiara DC, Jounaidi Y, Zhou X, Savechenkov PY, Bruzik KS, Miller KW, Cohen JB. General Anesthetic Binding Sites in Human α4β3δ γ-Aminobutyric Acid Type A Receptors (GABAARs). J Biol Chem 2016; 291:26529-26539. [PMID: 27821594 PMCID: PMC5159512 DOI: 10.1074/jbc.m116.753335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Extrasynaptic γ-aminobutyric acid type A receptors (GABAARs),which contribute generalized inhibitory tone to the mammalian brain, are major targets for general anesthetics. To identify anesthetic binding sites in an extrasynaptic GABAAR, we photolabeled human α4β3δ GABAARs purified in detergent with [3H]azietomidate and a barbiturate, [3H]R-mTFD-MPAB, photoreactive anesthetics that bind with high selectivity to distinct but homologous intersubunit binding sites in the transmembrane domain of synaptic α1β3γ2 GABAARs. Based upon 3H incorporation into receptor subunits resolved by SDS-PAGE, there was etomidate-inhibitable labeling by [3H]azietomidate in the α4 and β3 subunits and barbiturate-inhibitable labeling by [3H]R-mTFD-MPAB in the β3 subunit. These sites did not bind the anesthetic steroid alphaxalone, which enhanced photolabeling, or DS-2, a δ subunit-selective positive allosteric modulator, which neither enhanced nor inhibited photolabeling. The amino acids labeled by [3H]azietomidate or [3H]R-mTFD-MPAB were identified by N-terminal sequencing of fragments isolated by HPLC fractionation of enzymatically digested subunits. No evidence was found for a δ subunit contribution to an anesthetic binding site. [3H]azietomidate photolabeling of β3Met-286 in βM3 and α4Met-269 in αM1 that was inhibited by etomidate but not by R-mTFD-MPAB established that etomidate binds to a site at the β3+-α4- interface equivalent to its site in α1β3γ2 GABAARs. [3H]Azietomidate and [3H]R-mTFD-MPAB photolabeling of β3Met-227 in βM1 established that these anesthetics also bind to a homologous site, most likely at the β3+-β3- interface, which suggests a subunit arrangement of β3α4β3δβ3.
Collapse
Affiliation(s)
| | - Youssef Jounaidi
- the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Xiaojuan Zhou
- the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Pavel Y Savechenkov
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612
| | - Karol S Bruzik
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612
| | - Keith W Miller
- the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
29
|
Xu Z, Wu Q, Xu Q, He L. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite. Toxicol Sci 2016; 155:258-269. [DOI: 10.1093/toxsci/kfw210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Chua HC, Christensen ETH, Hoestgaard-Jensen K, Hartiadi LY, Ramzan I, Jensen AA, Absalom NL, Chebib M. Kavain, the Major Constituent of the Anxiolytic Kava Extract, Potentiates GABAA Receptors: Functional Characteristics and Molecular Mechanism. PLoS One 2016; 11:e0157700. [PMID: 27332705 PMCID: PMC4917254 DOI: 10.1371/journal.pone.0157700] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Extracts of the pepper plant kava (Piper methysticum) are effective in alleviating anxiety in clinical trials. Despite the long-standing therapeutic interest in kava, the molecular target(s) of the pharmacologically active constituents, kavalactones have not been established. γ-Aminobutyric acid type A receptors (GABAARs) are assumed to be the in vivo molecular target of kavalactones based on data from binding assays, but evidence in support of a direct interaction between kavalactones and GABAARs is scarce and equivocal. In this study, we characterised the functional properties of the major anxiolytic kavalactone, kavain at human recombinant α1β2, β2γ2L, αxβ2γ2L (x = 1, 2, 3 and 5), α1βxγ2L (x = 1, 2 and 3) and α4β2δ GABAARs expressed in Xenopus oocytes using the two-electrode voltage clamp technique. We found that kavain positively modulated all receptors regardless of the subunit composition, but the degree of enhancement was greater at α4β2δ than at α1β2γ2L GABAARs. The modulatory effect of kavain was unaffected by flumazenil, indicating that kavain did not enhance GABAARs via the classical benzodiazepine binding site. The β3N265M point mutation which has been previously shown to profoundly decrease anaesthetic sensitivity, also diminished kavain-mediated potentiation. To our knowledge, this study is the first report of the functional characteristics of a single kavalactone at distinct GABAAR subtypes, and presents the first experimental evidence in support of a direct interaction between a kavalactone and GABAARs.
Collapse
Affiliation(s)
- Han Chow Chua
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Emilie T. H. Christensen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonny Y. Hartiadi
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Iqbal Ramzan
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L. Absalom
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
McCracken ML, Gorini G, McCracken LM, Mayfield RD, Harris RA, Trudell JR. Inter- and Intra-Subunit Butanol/Isoflurane Sites of Action in the Human Glycine Receptor. Front Mol Neurosci 2016; 9:45. [PMID: 27378846 PMCID: PMC4906044 DOI: 10.3389/fnmol.2016.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission and are targets for alcohols and anesthetics in brain. GlyR transmembrane (TM) domains contain critical residues for alcohol/anesthetic action: amino acid A288 in TM3 forms crosslinks with TM1 (I229) in the adjacent subunit as well as TM2 (S267) and TM4 (Y406, W407, I409, Y410) in the same subunit. We hypothesized that these residues may participate in intra-subunit and inter-subunit sites of alcohol/anesthetic action. The following double and triple mutants of GLRA1 cDNA (encoding human glycine receptor alpha 1 subunit) were injected into Xenopus laevis oocytes: I229C/A288C, I229C/A288C/C290S, A288C/Y406C, A288C/W407C, A288C/I409C, and A288C/Y410C along with the corresponding single mutants and wild-type GLRA1. Butanol (22 mM) or isoflurane (0.6 mM) potentiation of GlyR-mediated currents before and after application of the cysteine crosslinking agent HgCl2 (10 μM) was measured using two-electrode voltage clamp electrophysiology. Crosslinking nearly abolished butanol and isoflurane potentiation in the I229C/A288C and I229C/A288C/C290S mutants but had no effect in single mutants or wild-type. Crosslinking also inhibited butanol and isoflurane potentiation in the TM3-4 mutants (A288C/Y406C, A288C/W407C, A288C/I409C, A288C/Y410C) with no effect in single mutants or wild-type. We extracted proteins from oocytes expressing I229C/288C, A288C/Y410C, or wild-type GlyRs, used mass spectrometry to verify their expression and possible inter-subunit dimerization, plus immunoblotting to investigate the biochemical features of proposed crosslinks. Wild-type GlyR subunits measured about 50 kDa; after crosslinking, the dimeric/monomeric 100:50 kDa band ratio was significantly increased in I229C/288C but not A288C/Y410C mutants or wild-type, providing support for TM1-3 inter-subunit and TM3-4 intra-subunit crosslinking. A GlyR homology model based on the GluCl template provides further evidence for a multi-site model for alcohol/anesthetic interaction with human GLRA1.
Collapse
Affiliation(s)
- Mandy L McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA; Integrative Neuroscience Research Branch, Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of HealthBaltimore, MD, USA
| | - Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - James R Trudell
- Department of Anesthesia and Beckman Program for Molecular and Genetic Medicine, Stanford School of Medicine Stanford, CA, USA
| |
Collapse
|
32
|
Ziemba AM, Forman SA. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors. PLoS One 2016; 11:e0154031. [PMID: 27110714 PMCID: PMC4844112 DOI: 10.1371/journal.pone.0154031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Background Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range. Methods Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep “notch” approach, and used these results to correct steady-state direct activation for inhibition. Results Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA. Conclusions Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.
Collapse
Affiliation(s)
- Alexis M. Ziemba
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stuart A. Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
- * E-mail:
| |
Collapse
|
33
|
A Cysteine Substitution Probes β3H267 Interactions with Propofol and Other Potent Anesthetics in α1β3γ2L γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2016; 124:89-100. [PMID: 26569173 DOI: 10.1097/aln.0000000000000934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Anesthetic contact residues in γ-aminobutyric acid type A (GABAA) receptors have been identified using photolabels, including two propofol derivatives. O-propofol diazirine labels H267 in β3 and α1β3 receptors, whereas m-azi-propofol labels other residues in intersubunit clefts of α1β3. Neither label has been studied in αβγ receptors, the most common isoform in mammalian brain. In αβγ receptors, other anesthetic derivatives photolabel m-azi-propofol-labeled residues, but not βH267. The authors' structural homology model of α1β3γ2L receptors suggests that β3H267 may abut some of these sites. METHODS Substituted cysteine modification-protection was used to test β3H267C interactions with four potent anesthetics: propofol, etomidate, alphaxalone, and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (mTFD-MPAB). The authors expressed α1β3γ2L or α1β3H267Cγ2L GABAA receptors in Xenopus oocytes. The authors used voltage clamp electrophysiology to assess receptor sensitivity to γ-aminobutyric acid (GABA) and anesthetics and to compare p-chloromercuribenzenesulfonate modification rates with GABA versus GABA plus anesthetics. RESULTS Enhancement of low GABA (eliciting 5% of maximum) responses by equihypnotic concentrations of all four anesthetics was similar in α1β3γ2L and α1β3H267Cγ2L receptors (n > 3). Direct activation of α1β3H267Cγ2L receptors, but not α1β3γ2L, by mTFD-MPAB and propofol was significantly greater than the other anesthetics. Modification of β3H267C by p-chloromercuribenzenesulfonate (n > 4) was rapid and accelerated by GABA. Only mTFD-MPAB slowed β3H267C modification (approximately twofold; P = 0.011). CONCLUSIONS β3H267 in α1β3γ2L GABAA receptors contacts mTFD-MPAB, but not propofol. The study results suggest that β3H267 is near the periphery of one or both transmembrane intersubunit (α+/β- and γ+/β-) pockets where both mTFD-MPAB and propofol bind.
Collapse
|
34
|
Luger D, Poli G, Wieder M, Stadler M, Ke S, Ernst M, Hohaus A, Linder T, Seidel T, Langer T, Khom S, Hering S. Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. Br J Pharmacol 2015; 172:5403-13. [PMID: 26375408 PMCID: PMC4988470 DOI: 10.1111/bph.13329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose β2/3‐subunit‐selective modulation of GABAA receptors by valerenic acid (VA) is determined by the presence of transmembrane residue β2/3N265. Currently, it is not known whether β2/3N265 is part of VA's binding pocket or is involved in the transduction pathway of VA's action. The aim of this study was to clarify the localization of VA's binding pocket on GABAA receptors. Experimental Approach Docking and a structure‐based three‐dimensional pharmacophore were employed to identify candidate amino acid residues that are likely to interact with VA. Selected amino acid residues were mutated, and VA‐induced modulation of the resulting GABAA receptors expressed in Xenopus oocytes was analysed. Key Results A binding pocket for VA at the β+/α− interface encompassing amino acid β3N265 was predicted. Mutational analysis of suggested amino acid residues revealed a complete loss of VA's activity on β3M286W channels as well as significantly decreased efficacy and potency of VA on β3N265S and β3F289S receptors. In addition, reduced efficacy of VA‐induced IGABA enhancement was also observed for α1M235W, β3R269A and β3M286A constructs. Conclusions and Implications Our data suggest that amino acid residues β3N265, β3F289, β3M286, β3R269 in the β3 subunit, at or near the etomidate/propofol binding site(s), form part of a VA binding pocket. The identification of the binding pocket for VA is essential for elucidating its pharmacological effects and might also help to develop new selective GABAA receptor ligands.
Collapse
Affiliation(s)
- D Luger
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - G Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - M Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - M Stadler
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - S Ke
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - M Ernst
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - A Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - T Linder
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - T Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - T Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - S Khom
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - S Hering
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Chua HC, Absalom NL, Hanrahan JR, Viswas R, Chebib M. The Direct Actions of GABA, 2'-Methoxy-6-Methylflavone and General Anaesthetics at β3γ2L GABAA Receptors: Evidence for Receptors with Different Subunit Stoichiometries. PLoS One 2015; 10:e0141359. [PMID: 26496640 PMCID: PMC4619705 DOI: 10.1371/journal.pone.0141359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
2'-Methoxy-6-methylflavone (2'MeO6MF) is an anxiolytic flavonoid which has been shown to display GABAA receptor (GABAAR) β2/3-subunit selectivity, a pharmacological profile similar to that of the general anaesthetic etomidate. Electrophysiological studies suggest that the full agonist action of 2'MeO6MF at α2β3γ2L GABAARs may mediate the flavonoid's in vivo effects. However, we found variations in the relative efficacy of 2'MeO6MF (2'MeO6MF-elicited current responses normalised to the maximal GABA response) at α2β3γ2L GABAARs due to the presence of mixed receptor populations. To understand which receptor subpopulation(s) underlie the variations observed, we conducted a systematic investigation of 2'MeO6MF activity at all receptor combinations that could theoretically form (α2, β3, γ2L, α2β3, α2γ2L, β3γ2L and α2β3γ2L) in Xenopus oocytes using the two-electrode voltage clamp technique. We found that 2'MeO6MF activated non-α-containing β3γ2L receptors. In an attempt to establish the optimal conditions to express a uniform population of these receptors, we found that varying the relative amounts of β3:γ2L subunit mRNAs resulted in differences in the level of constitutive activity, the GABA concentration-response relationships, and the relative efficacy of 2'MeO6MF activation. Like 2'MeO6MF, general anaesthetics such as etomidate and propofol also showed distinct levels of relative efficacy across different injection ratios. Based on these results, we infer that β3γ2L receptors may form with different subunit stoichiometries, resulting in the complex pharmacology observed across different injection ratios. Moreover, the discovery that GABA and etomidate have direct actions at the α-lacking β3γ2L receptors raises questions about the structural requirements for their respective binding sites at GABAARs.
Collapse
Affiliation(s)
- Han Chow Chua
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan L Absalom
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Jane R Hanrahan
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Raja Viswas
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Eaton MM, Cao LQ, Chen Z, Franks NP, Evers AS, Akk G. Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors. Mol Pharmacol 2015; 88:736-45. [PMID: 26206487 PMCID: PMC4576687 DOI: 10.1124/mol.115.100347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
Propofol is a sedative and anesthetic agent that can both activate GABA(A) receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABA(A) receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains of one subunit and the M2 domain of the neighboring subunit. The goal of the present study was to gain functional evidence for the involvement of this pocket in the actions of propofol. Human β3 and α1β3 receptors were expressed in Xenopus oocytes, and the effects of substitutions of selected residues were probed on channel activation by propofol and pentobarbital. The data demonstrate the vital role of the β3(Y143), β3(F221), β3(Q224), and β3(T266) residues in the actions of propofol but not pentobarbital in β3 receptors. The effects of β3(Y143W) and β3(Q224W) on activation by propofol are likely steric because propofol analogs with less bulky ortho substituents activated both wild-type and mutant receptors. The T266W mutation removed activation by propofol in β3 homomeric receptors; however, this mutation alone or in combination with a homologous mutation (I271W) in the α1 subunit had almost no effect on activation properties in α1β3 heteromeric receptors. We hypothesize that heteromeric α1β3 receptors can be activated by propofol interactions with β3-β3, α1-β3, and β3-α1 interfaces, but the exact locations of the binding site and/or nature of interactions vary in different classes of interfaces.
Collapse
Affiliation(s)
- Megan M Eaton
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| | - Lily Q Cao
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| | - Ziwei Chen
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| | - Nicholas P Franks
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| | - Alex S Evers
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| | - Gustav Akk
- Department of Anesthesiology (M.M.E., L.Q.C., Z.C., A.S.E., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (Z.C., A.S.E., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Life Sciences, Imperial College London, South Kensington, United Kingdom (N.P.F.)
| |
Collapse
|
37
|
Li P, Bracamontes JR, Manion BD, Mennerick S, Steinbach JH, Evers AS, Akk G. The neurosteroid 5β-pregnan-3α-ol-20-one enhances actions of etomidate as a positive allosteric modulator of α1β2γ2L GABAA receptors. Br J Pharmacol 2015; 171:5446-57. [PMID: 25117207 DOI: 10.1111/bph.12861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurosteroids potentiate responses of the GABAA receptor to the endogenous agonist GABA. Here, we examined the ability of neurosteroids to potentiate responses to the allosteric activators etomidate, pentobarbital and propofol. EXPERIMENTAL APPROACH Electrophysiological assays were conducted on rat α1β2γ2L GABAA receptors expressed in HEK 293 cells. The sedative activity of etomidate was studied in Xenopus tadpoles and mice. Effects of neurosteroids on etomidate-elicited inhibition of cortisol synthesis were determined in human adrenocortical cells. KEY RESULTS The neurosteroid 5β-pregnan-3α-ol-20-one (3α5βP) potentiated activation of GABAA receptors by GABA and allosteric activators. Co-application of 1 μM 3α5βP induced a leftward shift (almost 100-fold) of the whole-cell macroscopic concentration-response relationship for gating by etomidate. Co-application of 100 nM 3α5βP reduced the EC50 for potentiation by etomidate of currents elicited by 0.5 μM GABA by about three-fold. In vivo, 3α5βP (1mg kg(-1) ) reduced the dose of etomidate required to produce loss of righting in mice (ED50 ) by almost 10-fold. In tadpoles, the presence of 50 or 100 nM 3α5βP shifted the EC50 for loss of righting about three- or ten-fold respectively. Exposure to 3α5βP did not influence inhibition of cortisol synthesis by etomidate. CONCLUSIONS AND IMPLICATIONS Potentiating neurosteroids act similarly on orthosterically and allosterically activated GABAA receptors. Co-application of neurosteroids with etomidate can significantly reduce dosage requirements for the anaesthetic, and is a potentially beneficial combination to reduce undesired side effects.
Collapse
Affiliation(s)
- P Li
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hammer H, Bader BM, Ehnert C, Bundgaard C, Bunch L, Hoestgaard-Jensen K, Schroeder OHU, Bastlund JF, Gramowski-Voß A, Jensen AA. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol 2015; 88:401-20. [PMID: 26056160 PMCID: PMC4518083 DOI: 10.1124/mol.115.099291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug.
Collapse
Affiliation(s)
- Harriet Hammer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Benjamin M Bader
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Corina Ehnert
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Olaf H-U Schroeder
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Jesper F Bastlund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Alexandra Gramowski-Voß
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| |
Collapse
|
39
|
Liu W, Liu A, Liu G, Wang D, Chen K, Wang H. Biophysical study on the interaction of etomidate and the carrier protein in vitro. Pharm Dev Technol 2015; 21:528-34. [PMID: 25757642 DOI: 10.3109/10837450.2015.1022790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Etomidate is a unique drug used for induction of general anesthesia and sedation, and is usually used through intravenous injection clinically. Before targeting to the receptor, etomidate binds proteins in blood when it comes into veins. Thus to study the interaction of etomidate and serum albumin would be of great toxicological and pharmacological importance. In this study, the interaction between etomidate and human serum albumin (HSA) was studied using fluorescence spectroscopy, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD) spectroscopy, site maker displacement and molecular modeling methods. Investigations of the binding constant (K = 3.55 × 10(5 )M(-1), 295 K), the number of binding sites (n = 1.16), thermodynamic parameters (ΔG = 3.13 × 10(4 )J·mol(-1), ΔS = 364 J·mol(-1)·K(-1) and ΔH = -6.85 × 10(5 )J·mol(-1)) for the reaction and changes to the binding sites and conformation in HSA in response to etomidate were presented. Results show that etomidate can bind HSA tightly through electrostatic forces, and the protein skeleton conformation and secondary structure changes thereby. This is the first spectroscopic report for etomidate-HSA interactions which illustrates the complex nature of this subject.
Collapse
Affiliation(s)
- Wei Liu
- a Department of Anesthesiology , Jinan Maternal and Child Care Hospital , Jinan , China
| | - Aijie Liu
- b Department of Anesthesiology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Guoqiang Liu
- b Department of Anesthesiology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Dewei Wang
- c Department of Anesthesiology , Affiliated Hospital of Weifang Medical University , Weifang , China , and
| | - Kui Chen
- d Department of Anesthesiology , Shandong Jining No.1 People's Hospital , Jining , China
| | - Hongying Wang
- a Department of Anesthesiology , Jinan Maternal and Child Care Hospital , Jinan , China
| |
Collapse
|
40
|
Olsen RW. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:167-202. [PMID: 25637441 DOI: 10.1016/bs.apha.2014.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
41
|
Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics. PLoS One 2014; 9:e111470. [PMID: 25347186 PMCID: PMC4210246 DOI: 10.1371/journal.pone.0111470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Etomidate and propofol are potent general anesthetics that act via GABAA receptor allosteric co-agonist sites located at transmembrane β+/α- inter-subunit interfaces. Early experiments in heteromeric receptors identified βN265 (M2-15') on β2 and β3 subunits as an important determinant of sensitivity to these drugs. Mechanistic analyses suggest that substitution with serine, the β1 residue at this position, primarily reduces etomidate efficacy, while mutation to methionine eliminates etomidate sensitivity and might prevent drug binding. However, the βN265 residue has not been photolabeled with analogs of either etomidate or propofol. Furthermore, substituted cysteine modification studies find no propofol protection at this locus, while etomidate protection has not been tested. Thus, evidence of contact between βN265 and potent anesthetics is lacking and it remains uncertain how mutations alter drug sensitivity. In the current study, we first applied heterologous α1β2N265Cγ2L receptor expression in Xenopus oocytes, thiol-specific aqueous probe modification, and voltage-clamp electrophysiology to test whether etomidate inhibits probe reactions at the β-265 sidechain. Using up to 300 µM etomidate, we found both an absence of etomidate effects on α1β2N265Cγ2L receptor activity and no inhibition of thiol modification. To gain further insight into anesthetic insensitive βN265M mutants, we applied indirect structure-function strategies, exploiting second mutations in α1β2/3γ2L GABAA receptors. Using α1M236C as a modifiable and anesthetic-protectable site occupancy reporter in β+/α- interfaces, we found that βN265M reduced apparent anesthetic affinity for receptors in both resting and GABA-activated states. βN265M also impaired the transduction of gating effects associated with α1M236W, a mutation that mimics β+/α- anesthetic site occupancy. Our results show that βN265M mutations dramatically reduce the efficacy/transduction of anesthetics bound in β+/α- sites, and also significantly reduce anesthetic affinity for resting state receptors. These findings are consistent with a role for βN265 in anesthetic binding within the β+/α- transmembrane sites.
Collapse
|
42
|
Olsen RW. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands. Neurochem Res 2014; 39:1924-41. [PMID: 25015397 DOI: 10.1007/s11064-014-1382-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
Abstract
The GABAA receptors (GABAARs) play an important role in inhibitory transmission in the brain. The GABAARs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the 'receptor-specific' GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABAARs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABAARs. These binding sites depend on the GABAAR heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA, 90095-1735, USA,
| |
Collapse
|
43
|
Stewart DS, Hotta M, Li GD, Desai R, Chiara DC, Olsen RW, Forman SA. Cysteine substitutions define etomidate binding and gating linkages in the α-M1 domain of γ-aminobutyric acid type A (GABAA) receptors. J Biol Chem 2013; 288:30373-30386. [PMID: 24009076 DOI: 10.1074/jbc.m113.494583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Etomidate is a potent general anesthetic that acts as an allosteric co-agonist at GABAA receptors. Photoreactive etomidate derivatives labeled αMet-236 in transmembrane domain M1, which structural models locate in the β+/α- subunit interface. Other nearby residues may also contribute to etomidate binding and/or transduction through rearrangement of the site. In human α1β2γ2L GABAA receptors, we applied the substituted cysteine accessibility method to α1-M1 domain residues extending from α1Gln-229 to α1Gln-242. We used electrophysiology to characterize each mutant's sensitivity to GABA and etomidate. We also measured rates of sulfhydryl modification by p-chloromercuribenzenesulfonate (pCMBS) with and without GABA and tested if etomidate blocks modification of pCMBS-accessible cysteines. Cys substitutions in the outer α1-M1 domain impaired GABA activation and variably affected etomidate sensitivity. In seven of eight residues where pCMBS modification was evident, rates of modification were accelerated by GABA co-application, indicating that channel activation increases water and/or pCMBS access. Etomidate reduced the rate of modification for cysteine substitutions at α1Met-236, α1Leu-232 and α1Thr-237. We infer that these residues, predicted to face β2-M3 or M2 domains, contribute to etomidate binding. Thus, etomidate interacts with a short segment of the outer α1-M1 helix within a subdomain that undergoes significant structural rearrangement during channel gating. Our results are consistent with in silico docking calculations in a homology model that orient the long axis of etomidate approximately orthogonal to the transmembrane axis.
Collapse
Affiliation(s)
- Deirdre S Stewart
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Mayo Hotta
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Guo-Dong Li
- the Departments of Molecular and Medical Pharmacology and; Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Rooma Desai
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - David C Chiara
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | - Stuart A Forman
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114,.
| |
Collapse
|
44
|
The benzodiazepine diazepam potentiates responses of α1β2γ2L γ-aminobutyric acid type A receptors activated by either γ-aminobutyric acid or allosteric agonists. Anesthesiology 2013; 118:1417-25. [PMID: 23407108 DOI: 10.1097/aln.0b013e318289bcd3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The γ-aminobutyric acid (GABA) type A receptor is a target for several anesthetics, anticonvulsants, anxiolytics, and sedatives. Neurosteroids, barbiturates, and etomidate both potentiate responses to GABA and allosterically activate the receptor. We examined the ability of a benzodiazepine, diazepam, to potentiate responses to allosteric agonists. METHODS The GABA type A receptors were expressed in human embryonic kidney 293 cells and studied using whole-cell and single-channel patch clamp. The receptors were activated by the orthosteric agonist GABA and allosteric agonists pentobarbital, etomidate, and alfaxalone. RESULTS Diazepam is equally potent at enhancing responses to orthosteric and allosteric agonists. Diazepam EC50s were 25 ± 4, 26 ± 6, 33 ± 6, and 26 ± 3 nm for receptors activated by GABA, pentobarbital, etomidate, and alfaxalone, respectively (mean ± SD, 5-6 cells at each condition). Mutations to the benzodiazepine-binding site (α1(H101C), γ2(R144C), γ2(R197C)) reduced or removed potentiation for all agonists, and an inverse agonist at the benzodiazepine site reduced responses to all agonists. Single-channel data elicited by GABA demonstrate that in the presence of 1 μm diazepam the prevalence of the longest open-time component is increased from 13 ± 7 (mean ± SD, n = 5 patches) to 27 ± 8% (n = 3 patches) and the rate of channel closing is decreased from 129 ± 28 s(-1) to 47 ± 6 s(-1) (mean ± SD) CONCLUSIONS: We conclude that benzodiazepines do not act by enhancing affinity of the orthosteric site for GABA but rather by increasing channel gating efficacy. The results also demonstrate the presence of interactions between allosteric activators and potentiators, raising a possibility of effects on dosage requirements or changes in side effects.
Collapse
|
45
|
Stewart DS, Hotta M, Desai R, Forman SA. State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor. Mol Pharmacol 2013; 83:1200-8. [PMID: 23525330 PMCID: PMC3657098 DOI: 10.1124/mol.112.084558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/22/2013] [Indexed: 11/22/2022] Open
Abstract
A central axiom of ligand-receptor theory is that agonists bind more tightly to active than to inactive receptors. However, measuring agonist affinity in inactive receptors is confounded by concomitant activation. We identified a cysteine substituted mutant γ-aminobutyric acid type A (GABAA) receptor with unique characteristics allowing the determination of allosteric agonist site occupancy in both inactive and active receptors. Etomidate, the allosteric agonist, is an anesthetic that activates or modulates α1β2γ2L GABAA receptors via transmembrane sites near β2M286 residues in M3 domains. Voltage-clamp electrophysiology studies of α1β2M286Cγ2L receptors show that GABA is an efficacious agonist and that etomidate modulates GABA-activated activity, but direct etomidate agonism is absent. Quantitative analysis of mutant activity using an established Monod-Wyman-Changeux (MWC) allosteric model indicates that the intrinsic efficacy of etomidate, defined as its relative affinity for active versus inactive receptors, is lower than in wild-type receptors. Para-chloromercuribenzene sulfonate covalently modifies β2M286C side-chain sulfhydryls, irreversibly altering GABA-induced currents. Etomidate concentration dependently reduces the apparent rate of β2M286C-pCMBS bond formation, tracked electrophysiologically. High etomidate concentrations completely protect the β2M286C suflhydryl from covalent modification, suggesting close steric interactions. The 50% protective etomidate concentration (PC50) is 14 μM in inactive receptors and 1.1 to 2.2 μM during GABA-activation, experimentally demonstrating that activated receptors bind etomidate more avidly than do inactive receptors. The experimental PC50 values are remarkably close to, and therefore validate, MWC model predictions for etomidate dissociation constants in both inactive and active receptors. Our results support MWC models as valid frameworks for understanding the agonism, coagonism, and modulation of ligand-gated ion channels.
Collapse
Affiliation(s)
- Deirdre S Stewart
- Department of Anesthesia Critical Care & Pain Medicine, Beecher-Mallinckrodt Research Laboratories, and Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
46
|
Monod-Wyman-Changeux allosteric mechanisms of action and the pharmacology of etomidate. Curr Opin Anaesthesiol 2012; 25:411-8. [PMID: 22614249 DOI: 10.1097/aco.0b013e328354feea] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Formal Monod-Wyman-Changeux allosteric mechanisms have proven valuable in framing research on the mechanism of etomidate action on its major molecular targets, γ-aminobutyric acid type A (GABAA) receptors. However, the mathematical formalism of these mechanisms makes them difficult to comprehend. RECENT FINDINGS We illustrate how allosteric models represent shifting equilibria between various functional receptor states (closed versus open) and how co-agonism can be readily understood as simply addition of gating energy associated with occupation of distinct agonist sites. We use these models to illustrate how the functional effects of a point mutation, α1M236W, in GABAA receptors can be translated into an allosteric model phenotype. SUMMARY Allosteric co-agonism provides a robust framework for design and interpretation of structure-function experiments aimed at understanding where and how etomidate affects its GABAA receptor target molecules.
Collapse
|
47
|
Two etomidate sites in α1β2γ2 γ-aminobutyric acid type A receptors contribute equally and noncooperatively to modulation of channel gating. Anesthesiology 2012; 116:1235-44. [PMID: 22531336 DOI: 10.1097/aln.0b013e3182567df3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Etomidate is a potent hypnotic agent that acts via γ-aminobutyric acid receptor type A (GABA(A)) receptors. Evidence supports the presence of two etomidate sites per GABA(A) receptor, and current models assume that each site contributes equally and noncooperatively to drug effects. These assumptions remain untested. METHODS We used concatenated dimer (β2-α1) and trimer (γ2-β2-α1) GABA(A) subunit assemblies that form functional α1β2γ2 channels, and inserted α1M236W etomidate site mutations into both dimers (β2-α1M236W) and trimers (γ2-β2-α1M236W). Wild-type or mutant dimers (D(wt) or D(αM236W)) and trimers (T(wt) or T(αM236W)) were coexpressed in Xenopus oocytes to produce four types of channels: D(wt)T(wt), D(αM236W)T(wt), D(wt)T(αM236W), and D(αM236W)T(αM236W). For each channel type, two-electrode voltage clamp was performed to quantitatively assess GABA EC(50), etomidate modulation (left shift), etomidate direct activation, and other functional parameters affected by αM236W mutations. RESULTS Concatenated wild-type D(wt)T(wt) channels displayed etomidate modulation and direct activation similar to α1β2γ2 receptors formed with free subunits. D(αM236W)T(αM236W) receptors also displayed altered GABA sensitivity and etomidate modulation similar to mutated channels formed with free subunits. Both single-site mutant receptors (D(αM236W)T(wt) and D(wt)T(αM236W)) displayed indistinguishable functional properties and equal gating energy changes for GABA activation (-4.9 ± 0.48 vs. -4.7 ± 0.48 kJ/mol, respectively) and etomidate modulation (-3.4 ± 0.49 vs. -3.7 ± 0.38 kJ/mol, respectively), which together accounted for the differences between D(wt)T(wt) and D(αM236W)T(αM236W) channels. CONCLUSIONS These results support the hypothesis that the two etomidate sites on α1β2γ2 GABA(A) receptors contribute equally and noncooperatively to drug interactions and gating effects.
Collapse
|
48
|
Savechenkov PY, Zhang X, Chiara DC, Stewart DS, Ge R, Zhou X, Raines DE, Cohen JB, Forman SA, Miller KW, Bruzik KS. Allyl m-trifluoromethyldiazirine mephobarbital: an unusually potent enantioselective and photoreactive barbiturate general anesthetic. J Med Chem 2012; 55:6554-65. [PMID: 22734650 DOI: 10.1021/jm300631e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the (3)H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC(50) approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human α1β2/3γ2L GABA(A) receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both α1 and β3 subunits of human α1β3 GABA(A) receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.
Collapse
Affiliation(s)
- Pavel Y Savechenkov
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fernandez SP, Karim N, Mewett KN, Chebib M, Johnston GA, Hanrahan JR. Flavan-3-ol esters: new agents for exploring modulatory sites on GABA(A) receptors. Br J Pharmacol 2012; 165:965-77. [PMID: 21806603 DOI: 10.1111/j.1476-5381.2011.01615.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Enhancement of GABAergic function is the primary mechanism of important therapeutic agents such as benzodiazepines, barbiturates, neurosteroids, general anaesthetics and some anticonvulsants. Despite their chemical diversity, many studies have postulated that these agents may bind at a common or overlapping binding site, or share an activation domain. Similarly, we found that flavan-3-ol esters act as positive modulators of GABA(A) receptors, and noted that this action resembled the in vitro profile of general anaesthetics. In this study we further investigated the interactions between these agents. EXPERIMENTAL APPROACH Using two-electrode voltage clamp electrophysiological recordings on receptors of known subunit composition expressed in Xenopus oocytes, we evaluated positive modulation by etomidate, loreclezole, diazepam, thiopentone, 5α-pregnan-3α-ol-20-one (THP) and the flavan-3-ol ester 2S,3R-trans 3-acetoxy-4'-methoxyflavan (Fa131) on wild-type and mutated GABA(A) receptors. KEY RESULTS The newly identified flavan, 2S,3S-cis 3-acetoxy-3',4'-dimethoxyflavan (Fa173), antagonized the potentiating actions of Fa131, etomidate and loreclezole at α1β2 and α1β2γ2L GABA(A) receptors. Furthermore, Fa173 blocked the potentiation of GABA responses by high, but not low, concentrations of diazepam, but did not block the potentiation induced by propofol, the neurosteroid THP or the barbiturate thiopental. Mutational studies on 'anaesthetic-influencing' residues showed that, compared with wild-type GABA(A) receptors, α1M236Wβ2γ2L and α1β2N265Sγ2L receptors are resistant to potentiation by etomidate, loreclezole and Fa131. CONCLUSIONS AND IMPLICATIONS Fa173 is a selective antagonist that can be used for allosteric modulation of GABA(A) receptors. Flavan-3-ol derivatives are potential ligands for etomidate/loreclezole-related binding sites at GABA(A) receptors and the low-affinity effects of diazepam are mediated via the same site.
Collapse
Affiliation(s)
- Sebastian P Fernandez
- Department of Pharmacology Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
50
|
An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology 2012; 116:47-55. [PMID: 22104494 DOI: 10.1097/aln.0b013e31823d0c36] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Propofol produces its major actions via γ-aminobutyric acid type A (GABA(A)) receptors. At low concentrations, propofol enhances agonist-stimulated GABA(A) receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABA(A) receptor activation. It is unknown if the propofol binding site(s) on GABA(A) receptors that modulate agonist-induced activity also mediate direct activation. METHODS GABA(A) α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABA(A) receptors by identifying equiefficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. RESULTS Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABA(A) receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric coagonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. CONCLUSIONS Our results support the hypothesis that propofol, like etomidate, acts at GABA(A) receptor sites mediating both GABA modulation and direct activation.
Collapse
|