1
|
Shboul M, Bani Domi A, Abu Zahra A, Khasawneh AG, Darweesh R. Plasma miRNAs as potential biomarkers for schizophrenia in a Jordanian cohort. Noncoding RNA Res 2024; 9:350-358. [PMID: 38511065 PMCID: PMC10950580 DOI: 10.1016/j.ncrna.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Background Schizophrenia (SZ), a complex and chronic neuropsychiatric disorder affecting approximately 1 % of the general population, presents diagnostic challenges due to the absence of reliable biomarkers, and relying mainly on clinical observations. MicroRNAs (miRNAs) signatures in a wide range of diseases, including psychiatric disorders, hold immense potential for serving as biomarkers. This study aimed to analyze the expression levels of specific microRNAs (miRNAs) namely miR-29b-3p, miR-106b-5p, and miR-199a-3p and explore their diagnostic potential for SZ in Jordanian patients. Methods Small RNAs (miRNAs) were extracted from plasma samples of 30 SZ patients and 35 healthy controls. RNA was reverse transcribed and quantified by real-time polymerase chain reaction (qRT-PCR). The expression levels of three miRNAs (miR-29b-3p, miR-106b-5p and miR-199a-3p) were analyzed. Receiver operating characteristic (ROC) curves analysis was performed to evaluate diagnostic value of these miRNAs. Target genes prediction, functional enrichment and pathway analyses were done using miRWalk and Metascape. STRING database was used to construct protein-protein network and identify hub genes. Results Notably, miR-106b-5p and miR-199a-3p were significantly upregulated (p < 0.0001), while miRNA-29b-3p was downregulated (p < 0.0001) in SZ patients compared to controls. The diagnostic potential was assessed through ROC curves, revealing substantial diagnostic value for miR-199a-3p (AUC: 0.979) followed by miR-106b-5p (AUC: 0.774), with limited diagnostic efficacy for miR-29b-3p. Additionally, bioinformatic analyses for the predicted target genes of the diagnostically significant miRNAs uncovered Gene Ontology (GO) terms related to neurological development, including morphogenesis, which is involved in neuron differentiation, brain development, head development, and neuron projection morphogenesis. These findings highlight a potential connection between the identified miRNAs and SZ pathophysiology in the studied Jordanian population. Furthermore, a protein-protein interaction network from the target genes identified in association with neurological development in the Gene Ontology (GO) terms deepens our comprehension of the molecular landscape of the regulated target genes. Conclusions This comprehensive exploration highlights the promising role of miRNAs in unraveling intricate molecular pathways associated with SZ in the Jordanian cohort and suggests that plasma miRNAs could serve as reliable biomarkers for SZ diagnosis and disease progression. Remarkably, this study represents the first investigation into the role of circulating miRNA expression among Jordanian patients with SZ, providing valuable insights into the diagnostic landscape of this disorder.
Collapse
Affiliation(s)
- Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Amal Bani Domi
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Abdulmalek Abu Zahra
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Aws G. Khasawneh
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Reem Darweesh
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
3
|
Ahmadimanesh M, Etemad L, Morshedi Rad D, Ghahremani MH, Mohammadpour AH, Jafarzadeh Esfehani R, Jowsey P, Behdani F, Moallem SA, Abbaszadegan MR. Effect of citalopram and sertraline on the expression of miRNA- 124, 132, and 16 and their protein targets in patients with depression. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:820-829. [PMID: 37396946 PMCID: PMC10311976 DOI: 10.22038/ijbms.2023.66496.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/06/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of SSRIs on the expression of miRNAs and their protein targets. MATERIALS AND METHODS In a 100 day open-label study of citalopram (n=25) and sertraline (n=25), levels of miRNA 16, 132, and 124 and glucocorticoid receptor (GR), Brain-derived neurotrophic factor (BDNF), and serotonin transporter (SERT) protein expression were measured by QRT-PCR and western blot in healthy control (n=20), patients with depression at the baseline, and same patients after 100 days of treatment. RESULTS Expression levels of GR and BDNF proteins were lower in the depressed group before treatment as compared with the healthy group (P<0.0001). The SERT level was higher among the depressed group before treatment in comparison with the healthy group (P<0.0001). The level of GR and BDNF significantly increased, and SERT expression decreased after receiving sertraline (P<0.05). When the depressed group received citalopram, only SERT and GR were altered (P<0.05). Among the microRNAs' expression investigated, mir-124 and mir-132 were higher, and mir-16 was lower among the depressed compared with the healthy group (P<0.0001). Individuals receiving citalopram only showed an increase in the expression of mir-16 while administration of sertraline led to a significant increase in the expression of mir-16 and a decrease in mir-124 and mir-132 (P<0.05). CONCLUSION This elucidated the relationship between antidepressant treatment and the expression of different microRNA that control gene expression in various pathways involved in depressed patients. Receiving SSRI can affect the level of these proteins and their relevant microRNAs.
Collapse
Affiliation(s)
- Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- Center of Health Technologies, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of clinical pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Jafarzadeh Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Jowsey
- National Institute for Health Research (NIHR), Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Fatemeh Behdani
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
5
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating microRNAs and Molecular Oxidative Stress in Older Adults with Neuroprogression Disorders. DISEASE MARKERS 2021; 2021:4409212. [PMID: 34721735 PMCID: PMC8556086 DOI: 10.1155/2021/4409212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND circulating microRNAs are potential blood biomarkers differentially expressed in many diseases including neuro depression disorders. It controls the expression of human genes and associated cellular and physiological processes in normal and diseased cells. We aimed to evaluate the potential role of circulating miRNAs and their association with both stress hormones and cellular oxidative stress in neuro depression disorders occurred among older adults. METHODS a total of 70 healthy subjects were included in this study. Based upon the profile of mood states (POMS-32 score), the participants classified into two groups; healthy subjects (n =30) and depression (n =40). The expression of microRNAs; miR-124, miR-34a-5p, miR-135, and miR-451-a and their correlation with cellular oxidative stress parameters; cellular NO, genes of SOD2, CAT and iNOS, and hormones; cortisol and serotonin were estimated by a quantitative real-time RT-PCR, high-performance liquid chromatography, and ELISA Immunoassay techniques, respectively. RESULTS depression was reported in 57.14% of the participants. The results showed a significant increase (p =0.01) in the total mood scores, and relative depression domains in older adults with depression compared to healthy controls. The relative expression levels of miR-124, miR-34a-5p significantly increased and the expression levels of miR-135, and miR-451-a significantly decreased in older adults with depression compared to healthy controls. In addition, the levels of cortisol significantly increased and serotonin (5HT) significantly reduced in all participants with depression. Cellular oxidative stress analysis for depressed subjects showed that serum NO levels and the expression of iNO gene significantly increased conversely with a decline in the molecular expression antioxidative genes; SOD2, CAT, respectively. The results showed that cellular oxidative stress parameters correlated positively with depression scores, cortisol, and negatively with cellular serotonin levels. In depressed subjects, the relative expression of microRNAs correlated positively with depression score, NO, iNOS, cortisol, and negatively associated with SOD2, CAT, and serotonin. CONCLUSION The combination of cellular oxidative stress and hormonal levels strongly supports a role for circulating miRNAs; miR-124, miR-34a-5p, miR-135, and miR-451-a in the regulation of depression and mood disorders among older adults. The expressed microRNAs with their related association to cellular oxidative stress and adrenal hormones are a step towards understanding the role of these small RNA molecules in the progression of depression among older adults. Thus, cellular miRNAs might have a prognostic role in the diagnosis and as a target for treatment strategies in depressed subjects.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Gomes C, Cunha C, Nascimento F, Ribeiro JA, Vaz AR, Brites D. Cortical Neurotoxic Astrocytes with Early ALS Pathology and miR-146a Deficit Replicate Gliosis Markers of Symptomatic SOD1G93A Mouse Model. Mol Neurobiol 2018; 56:2137-2158. [DOI: 10.1007/s12035-018-1220-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
|
7
|
Mito M, Kadota M, Tanaka K, Furuta Y, Abe K, Iwasaki S, Nakagawa S. Cell Type-Specific Survey of Epigenetic Modifications by Tandem Chromatin Immunoprecipitation Sequencing. Sci Rep 2018; 8:1143. [PMID: 29348483 PMCID: PMC5773701 DOI: 10.1038/s41598-018-19494-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
The nervous system of higher eukaryotes is composed of numerous types of neurons and glia that together orchestrate complex neuronal responses. However, this complex pool of cells typically poses analytical challenges in investigating gene expression profiles and their epigenetic basis for specific cell types. Here, we developed a novel method that enables cell type-specific analyses of epigenetic modifications using tandem chromatin immunoprecipitation sequencing (tChIP-Seq). FLAG-tagged histone H2B, a constitutive chromatin component, was first expressed in Camk2a-positive pyramidal cortical neurons and used to purify chromatin in a cell type-specific manner. Subsequent chromatin immunoprecipitation using antibodies against H3K4me3-a chromatin modification mainly associated with active promoters-allowed us to survey the histone modifications in Camk2a-positive neurons. Indeed, tChIP-Seq identified hundreds of H3K4me3 modifications in promoter regions located upstream of genes associated with neuronal functions and genes with unknown functions in cortical neurons. tChIP-Seq provides a versatile approach to investigating the epigenetic modifications of particular cell types in vivo.
Collapse
Affiliation(s)
- Mari Mito
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mitsutaka Kadota
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kaori Tanaka
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, 351-0198, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
8
|
Liu Q, Sun NN, Wu ZZ, Fan DH, Cao MQ. Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways. Neural Regen Res 2018; 13:837-845. [PMID: 29863014 PMCID: PMC5998613 DOI: 10.4103/1673-5374.232478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of miR-124 has been reported to be involved in the pathophysiology of depression. Chaihu-Shugan-San, a traditional Chinese medicine, has antidepressive activity; however, the underlying mechanisms remain unclear. In this study, to generate a rodent model of depression, rats were subjected to a combination of solitary confinement and chronic unpredictable mild stress for 28 days. Rats were intragastrically administered Chaihu-Shugan-San (2.835 mL/kg/d) for 4 weeks, once a day. Real-time reverse-transcription quantitative polymerase chain reaction, miRNA microarray, western blot assay and transmission electron microscopy demonstrated that Chaihu-Shugan-San downregulated miR-124 expression and upregulated the mRNA and protein levels of mitogen-activated protein kinase 14 (MAPK14) and glutamate receptor subunit 3 (Gria3). Chaihu-Shugan-San also promoted synapse formation in the hippocampus. The open field test, sucrose consumption test and forced swimming test were used to assess depression-like behavior. After intragastric administration of Chaihu-Shugan-San, sucrose consumption increased, while the depressive behaviors were substantially reduced. Together, these findings suggest that Chaihu-Shugan-San exerts an antidepressant-like effect by downregulating miR-124 expression and by releasing the inhibition of the MAPK14 and Gria3 signaling pathways.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Cardiovascular Medicine, XiangYa Hospital of Central South University, Changsha, Hunan Province, China
| | - Ning-Ning Sun
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Da-Hua Fan
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen; Chinese and Wsetern Integrative Medicine, Shcool of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Mei-Qun Cao
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
9
|
Zhao F, Qu Y, Zhu J, Zhang L, Huang L, Liu H, Li S, Mu D. miR-30d-5p Plays an Important Role in Autophagy and Apoptosis in Developing Rat Brains After Hypoxic–Ischemic Injury. J Neuropathol Exp Neurol 2017; 76:709-719. [DOI: 10.1093/jnen/nlx052] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Sørensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M, Christensen T. Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res 2017; 5:24. [PMID: 28702194 PMCID: PMC5504978 DOI: 10.1186/s40364-017-0104-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the potential of cerebrospinal fluid miRNAs as diagnostic biomarkers of acute ischemic stroke using three different profiling techniques in order to identify and bypass any influence from technical variation. METHODS Cerebrospinal fluid (CSF) from patients with acute ischemic stroke (n = 21) and controls (n = 21) was collected by lumbar puncture. miRNA analysis was performed with three different methods: 1) Trizol RNA extraction followed by Illumina Next Generation Sequencing (NGS) on all small RNAs, 2) Exiqon RNA extraction protocol and miRNA qPCR assays, and 3) validation of 24 selected miRNAs with Norgen Biotek RNA extraction protocol and Applied Biosystems qPCR assays. RESULTS NGS detected 71 frequently expressed miRNAs in CSF of which brain-enriched miR-9-5p and miR-128-3p were significantly higher in CSF of stroke patients compared to controls. When dividing stroke patients into groups according to infarct size several brain-enriched miRNAs (miR-9-5p, miR-9-3p, miR-124-3p, and miR-128-3p) were elevated in patients with infarcts >2 cm3. This trend appeared in data from both NGS, qPCR (Exiqon), and qPCR (Applied Biosystems) but was only statistically significant in some of the measurement platforms. CONCLUSIONS Several brain-enriched miRNAs are elevated in the CSF three days after stroke onset, suggesting that these miRNAs reflect the brain damage caused by ischemia. The expression differences seem, however, limited to patients with larger ischemic brain injury, which argues against the use of CSF miRNAs as diagnostic biomarkers of stroke based on current methods.
Collapse
Affiliation(s)
- Sofie Sølvsten Sørensen
- Department of Neurology, Nordsjællands Hospital, University of Copenhagen, Dyrehavevej 29, 3400 Hillerød, Denmark
| | - Ann-Britt Nygaard
- Department of Clinical Biochemistry, Nordsjællands Hospital, Hillerød, Denmark
| | - Anting Liu Carlsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Christensen
- Department of Neurology, Nordsjællands Hospital, University of Copenhagen, Dyrehavevej 29, 3400 Hillerød, Denmark
| |
Collapse
|
11
|
The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population. Neurosci Lett 2017; 651:65-71. [PMID: 28461137 DOI: 10.1016/j.neulet.2017.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous studies have shown that microRNAs(miRNAs) are involved in the pathogenesis of MDD; in particular, miR-34b/c has been implicated in MDD risk and found to exert antidepressant effects. However, the effects of miR-34b/c polymorphisms on MDD risk have not been investigated. METHODS In this study, we evaluated the effect of miR-34b/c gene polymorphisms and their interaction with negative life events in relation to MDD, using data from 381 Han Chinese patients with MDD and 291 healthy volunteers. Allelic, genotypic, haplotypic, and gene-environment associations were analyzed using UNPHASED and SPSS software. RESULTS After discarding data with extremely severe negative life events in our study population, we found an association between rs4938723, rs2187473 polymorphisms and MDD in the dominant models (TC/CC vs. TT, OR=1.45, P=0.027; TC/CC vs. TT, OR=3.32, P=0.030). In haplotype analysis, the C-G haplotype (rs4938723/rs28757623) showed the strongest association with MDD (OR=1.95, P=0.026). Additionally, we found significant gene-environment combination rs4938723 C allele, rs28757623 G allele and high level of negative life events (C-G-HN) was significantly associated with MDD (OR, 3.85; 95% CI, 1.62-9.13). In addition, the combination of (C-C-HN) is of significance (OR, 2.99; 95% CI, 1.36-6.60), indicating that the rs28757623 C allele may contribute to the risk of MDD as well. LIMITATIONS The sample size was small and the role of miR-34b/c polymorphisms for MDD should be assessed using independent samples from other ethnic populations. CONCLUSIONS Our results suggest that miR-34b/c is a susceptibility factor for MDD stratified by negative life events and that rs4938723 is a significant association locus for gene-environment interaction in relation to MDD risk.
Collapse
|
12
|
Jiang H, Good DJ. A molecular conundrum involving hypothalamic responses to and roles of long non-coding RNAs following food deprivation. Mol Cell Endocrinol 2016; 438:52-60. [PMID: 27555291 PMCID: PMC5116272 DOI: 10.1016/j.mce.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) are one of most poorly understood RNA classes in the mammalian transcriptome. However, they are emerging as important players in transcriptional regulation, especially within the complexity of the nervous system. This review summarizes the known information about lncRNAs, and their roles in endocrine processes, as well as the lesser-known information about lncRNAs in the brain, and in the neuroendocrine hypothalamus. A "call-to-action" is presented for researchers to use archival transcriptome data to characterize differentially expressed lncRNA species within the hypothalamus. In accordance, we analyze for differential-expression of lncRNA between normal mice and mice with a targeted deletion of the nescient helix-loop-helix 2 gene, and between C57Bl/6 and 129Sv/J mice. Finally, strategies and approaches for researchers to analyze their own datasets or those on the NCBI GEO datasets repository are provided, in hopes that future studies will reveal many new roles for lncRNAs in hypothalamic physiological responses, solving this so-called "molecular conundrum" once and for all.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
The significance of microRNAs in the course of rDD. Pharmacol Rep 2016; 69:206-212. [PMID: 28073061 DOI: 10.1016/j.pharep.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, special attention in genetic studies dedicated to the development of various diseases, including mental disorders, has been paid to micro ribonucleic acids (miRNA, microRNA). As an object of our analysis we have selected the miRNAs which - due to the profile of their activity - may be significant in the aetiology and course of recurrent depressive disorders, i.e. miRNA-370, miRNA-411, miRNA-433, miRNA-487b and miRNA-539. METHODS The examined population included 138 patients suffering from depression and 95 individuals from the control group (CG). The subjects suffering from depression were divided into two sub-groups: ED-I group (46 patients), rDD group (92 patients). RESULTS No significant statistical differences were observed between the ED-I and rDD group for all the variables included in the analysis. No significant interrelation was noticed between the number of depression episodes, the severity of depressive disorders and the expression of miRNA selected. Results of the analysis indicate statistically significant differences between the control subjects and the patients with symptoms of depression in terms of all the variables analysed. CONCLUSIONS 1. There is no significant difference in miRNAs expression between patients with recurrent depressive disorders and those in the first episode of depression. 2. The differences in terms of expression of the analysed variables between the subjects with symptoms of depression and healthy individuals were confirmed.
Collapse
|
14
|
Sun N, Lei L, Wang Y, Yang C, Liu Z, Li X, Zhang K. Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J Affect Disord 2016; 194:109-14. [PMID: 26807671 DOI: 10.1016/j.jad.2016.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common debilitating disease of unknown etiology. The expression of miRNA is closely related to depression and efficacy of antidepressant therapy. However, whether Notch-associated miRNAs expressions involved in first-episode of MDD are still unknown. METHODS In this study, the expression levels of Notch1, Hes1 mRNA and 5 miRNAs (miR-369-3p, miR-34b-5p, miR-34c-5p, miR-381 and miR-107) in peripheral blood leukocytes of 32 MDD patients and 32 healthy controls were detected using qRT-PCR method. We also assessed the severity of depressive symptom, suicide risk level, negative life events and event-related potential P300. RESULTS The expression levels of miR-34b-5p (62.49 as the median of cases group and 38.62 as median of control group) and miR-34c-5p (7.17 as the median of cases group and 5.45 as median of control group) in MDD patients were significantly higher than these in control subjects. NOTCH1 gene were significantly lower in MDD patients (5.35 as the median of cases group and 6.80 as median of control group), and was negatively correlated with the expression miR-34c-5p and miR-34b-5p. The expression level of miR-34b-5p and miR-369-3p were significantly lower in patients with suicide idea. N1 latency of P300 were positive correlated with miR-34c-5p, miR-107 and miR-381, and P2 latency of P300 were positive correlated with miR-34c-5p, miR-107 and miR-381. LIMITATIONS The sample size was small and the role of candidate miRNAs in the regulation of Notch1 gene and cognitive function are still need to be further investigated. CONCLUSIONS Differentially Notch-associated miRNAs expressions in peripheral blood might be involved in MDD, and the miR-34b-5p and miR-34c-5p levels in peripheral blood leukocytes are closely related to MDD, suicide idea and cognitive function, further studies with large sample size are warranted to test the feasibility of these miRNAs serving as biomarkers for MDD.
Collapse
Affiliation(s)
- Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China; Nuring College of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Lei Lei
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Peng G, Yuan Y, Wu S, He F, Hu Y, Luo B. MicroRNA let-7e Is a Potential Circulating Biomarker of Acute Stage Ischemic Stroke. Transl Stroke Res 2015; 6:437-45. [DOI: 10.1007/s12975-015-0422-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
|
16
|
Wu L, Shi B, Huang K, Fan G. MicroRNA-128 suppresses cell growth and metastasis in colorectal carcinoma by targeting IRS1. Oncol Rep 2015; 34:2797-805. [PMID: 26352220 DOI: 10.3892/or.2015.4251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 01/24/2023] Open
Abstract
Evidence has shown that microRNAs play important roles in tumor development, progression, and metastasis. miR-128 has been reported to be deregulated in different tumor types, whereas the function of miR-128 in colorectal carcinoma (CRC) largely remains to be elucidated. The aim of the present study was to investigate the clinical significance, biological effects and underlying mechanisms of miR-128 in CRC using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. It was found that the expression of miR-128 was downregulated in CRC tissues and cell lines as determined by RT-qPCR. Furthermore, the expression of miR-128 in tumor tissues was significantly negatively correlated with TNM stage and lymph node metastasis in CRC patients. Functional assay revealed that the overexpression of miR-128 inhibited CRC cell proliferation, colony formation, migration and invasion and promoted apoptosis in vitro, and suppressed CRC xenograft tumor growth in vivo. In addition, insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling, was confirmed as a direct target of miR-128 by a luciferase reporter assay. Western blot analysis indicated that the overexpression of miR-128 significantly downregulated IRS1 expression and its downstream Akt signaling in CRC cells. Moreover, miR-128 was negatively associated with IRS1 in CRC tissues compared to adjacent non-tumor tissues. Taken together, these data suggested that miR-128 serves as a tumor suppressor and blocks CRC growth and metastasis by targeting IRS1.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Shi
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kexin Huang
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoyu Fan
- Department of Oncology, The Center Hospital of Jilin City, Fengman, Jilin 132011, P.R. China
| |
Collapse
|
17
|
Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J. Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics 2015. [PMID: 26199675 PMCID: PMC4509564 DOI: 10.1186/s13148-015-0099-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Depressive/anxiety disorders are the most common types of mental illnesses in the world. The present study was the first to explore the association between plasma microRNAs (miRNAs) and depression/anxiety in primary care patients. Results In total, 169 patients (aged 20–64 years) from 16 primary health centers were enrolled in the present study. The healthy controls were consisted of 52 individuals. We first performed miRNA screening of plasma samples from 11 patients using a Serum/Plasma Focus microRNA Panel comprising 179 miRNA primer sets. Six miRNAs were differentially expressed and were then validated by quantitative real-time (qRT)-PCR in the entire study cohort. The mean plasma miR-144-5p level in the depression/anxiety patients increased significantly compared to baseline (p < 0.0001) after the 8-week follow-up. No significant associations were found between the differentially expressed miRNAs and a change in the Montgomery-Åsberg Depression Rating Scale (MADRS-S) score after the follow-up. In linear regression analysis, the plasma miR-144-5p expression level was inversely related to the depression score (MADRS-S) (β = −0.02, p < 0.01), after adjustment for sex and age, at baseline. In addition, plasma miR-144-5p levels at baseline in the depression/anxiety patients were significantly lower compared with the healthy controls (p < 0.001). Conclusions Our findings show that plasma miR-144-5p levels are associated with depressive symptoms. Although confirmatory analyses are required, plasma miRNA-144-5p is a potential peripheral biomarker for pathologic processes related to depression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0099-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden ; Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Karolina Palmér
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden ; Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
18
|
Sun X, Li Y, Yu J, Pei H, Luo P, Zhang J. miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1. Jpn J Clin Oncol 2015; 45:474-82. [PMID: 25921099 DOI: 10.1093/jjco/hyv027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/07/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Recent reports strongly suggest the profound role of miRNAs in cancer therapeutic response and progression, including invasion and metastasis. The sensitivity to therapy and invasion is the major obstacle for successful treatment in prostate cancer. We aimed to investigate the regulative effect of miR-128/zinc-finger E-box-binding homeobox 1 axis on prostate cancer cell chemosensitivity and invasion. METHODS The miR-128 expression pattern of prostate cancer cell lines and tissues was detected by real-time reverse transcriptase-polymerase chain reaction, while the mRNA and protein expression levels of zinc-finger E-box-binding homeobox 1 were measured by real-time reverse transcriptase-polymerase chain reaction and western blot assay, respectively. Dual-luciferase reporter gene assay was used to find the direct target of miR-128. Furthermore, prostate cancer cells were treated with miR-128 mimic or zinc-finger E-box-binding homeobox 1-siRNA, and then the cells' chemosensitivity and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and transwell assay, respectively. RESULTS We found miR-128 expression obviously decreased in prostate cancer tissues compared with paired normal tissues. Restored miR-128 expression sensitized prostate cancer cells to cisplatin and inhibited the invasion. Furthermore, there was an inverse expression pattern between miR-128 and zinc-finger E-box-binding homeobox 1 in prostate cancer cells and tissues, and zinc-finger E-box-binding homeobox 1 was identified as a direct target of miR-128 in prostate cancer. Knockdown of zinc-finger E-box-binding homeobox 1 expression efficiently sensitized prostate cancer cells to cisplatin and inhibited the invasion. However, ectopic zinc-finger E-box-binding homeobox 1 expression impaired the effects of miR-128 on chemosensitivity and invasion in prostate cancer cells. CONCLUSIONS miR-128 functions as a potential cancer suppressor in prostate cancer progression and rational therapeutic strategies for prostate cancer would be developed based on miR-128/zinc-finger E-box-binding homeobox 1 axis.
Collapse
Affiliation(s)
- Xianglun Sun
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Youkong Li
- Jingzhou Central Hospital, Huazhong University of Science and Technology, Jingzhou, Hubei
| | - Jie Yu
- Jingzhou Central Hospital, Huazhong University of Science and Technology, Jingzhou, Hubei
| | - Hong Pei
- Jingzhou Central Hospital, Huazhong University of Science and Technology, Jingzhou, Hubei
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei, PR China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei, PR China
| |
Collapse
|
19
|
Yan H, Hong P, Jiang M, Li H. MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regen Res 2015; 7:1352-9. [PMID: 25657667 PMCID: PMC4308808 DOI: 10.3969/j.issn.1673-5374.2012.17.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are a class of recently discovered, small non-coding RNAs that have been shown to play essential roles in a vast majority of biological processes. Very little is known about the role of microRNAs during spinal cord injury. This review summarizes the changes in expression levels of microRNAs after spinal cord injury. These aberrant changes suggest that microRNAs play an important role in inflammation, oxidative stress, apoptosis, glial scar formation and axonal regeneration. Given their small size and specificity of action, microRNAs could be potential therapeutics for treating spinal cord injury in the future. There are rapidly developing techniques for manipulating microRNA levels in animals; we review different chemical modification and delivery strategies. These may provide platforms for designing efficient microRNA delivery protocols for use in the clinic.
Collapse
Affiliation(s)
- Hualin Yan
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Peiwei Hong
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei Jiang
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hedong Li
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
20
|
Fan HM, Sun XY, Guo W, Zhong AF, Niu W, Zhao L, Dai YH, Guo ZM, Zhang LY, Lu J. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res 2014; 59:45-52. [PMID: 25201637 DOI: 10.1016/j.jpsychires.2014.08.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/02/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
Abstract
Currently, diagnosis and treatment of major depressive disorder (MDD) are based on the patients' description of symptoms, mental status examinations, and clinical behavioral observations, which increases the chance of misdiagnosis. There is a serious need to find a practical biomarker for the proper diagnosis of MDD. This study aimed to explore the possibility of microRNA (miRNA) in peripheral blood mononuclear cells (PBMCs) as specific blood-based biomarker for MDD patients. By using an Affymetrix array that covers 723 human miRNAs, we identified 26 miRNAs with significant changes in expression in PBMCs of MDD patients. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in a larger cohort of 81 MDD patients and 46 healthy controls confirmed that the expression levels of 5 miRNAs (miRNA-26b, miRNA-1972, miRNA-4485, miRNA-4498, and miRNA-4743) were up-regulated. By receiver operating characteristic (ROC) curve analysis, the combining area under the ROC curve (AUC) of these five miRNAs was 0.636 [95% confidence interval (CI): 0.58-0.90]. MiRNA target gene prediction and functional annotation analysis showed that there was a significant enrichment in several pathways associated with nervous system and brain functions, supporting the hypothesis that differentially-regulated miRNAs may be involved in mechanism underlying development of MDD. We conclude that altered expression of miRNAs in PMBCs might be involved in multiple stages of MDD pathogenesis, and thus might be able to serve as specific biomarker for diagnosis of MDD.
Collapse
Affiliation(s)
- Hui-min Fan
- Department of Psychiatry and Psychology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xin-yang Sun
- Department of Psychiatry and Psychology, Second Military Medical University, Shanghai 200433, People's Republic of China; Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, North Peace Road 55, Changzhou 213003, Jiangsu, People's Republic of China
| | - Wei Guo
- Administrative Affairs Office, No.102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Ai-fang Zhong
- Department of Laboratory, No.102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Wei Niu
- Department of Rehabilitation, No.102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Lin Zhao
- Department of Psychiatry, Suzhou Psychiatric Hospital, Suzhou 215008, Jiangsu, People's Republic of China
| | - Yun-hua Dai
- GoPath Diagnostic Laboratory Co. Ltd, No. 801, Changwuzhong Road, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhong-min Guo
- GoPath Diagnostic Laboratory Co. Ltd, No. 801, Changwuzhong Road, Changzhou, Jiangsu 213164, People's Republic of China; GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA
| | - Li-yi Zhang
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, North Peace Road 55, Changzhou 213003, Jiangsu, People's Republic of China.
| | - Jim Lu
- GoPath Diagnostic Laboratory Co. Ltd, No. 801, Changwuzhong Road, Changzhou, Jiangsu 213164, People's Republic of China; GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA.
| |
Collapse
|
21
|
Reductions in the expression of miR-124-3p, miR-128-1, and miR-221-3p in pediatric astrocytomas are related to high-grade supratentorial, and recurrent tumors in Mexican children. Childs Nerv Syst 2014; 30:1173-81. [PMID: 24718706 DOI: 10.1007/s00381-014-2416-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Astrocytomas are the most frequent type of tumor of the central nervous system in children. Hence, it is important to describe markers that may improve our understanding of their behavior. Mature microRNAs (miRNAs) may be such biological markers. They are small molecules of RNA that regulate gene expression post-transcriptionally. Due to their importance in cancer, the objective of the present study was to determine the profile of expression of precursor and mature forms of miR-124-3p, miR-128-1, and miR-221-3p using RT-qPCR in pediatric samples. METHODS A total of 57 astrocytomas embedded in paraffin were selected. As controls, the study included 13 samples of normal brain tissue. RESULTS Three of eight miRNAs were selected after a preliminary screening. All the miRNAs showed higher levels of expression in normal brain tissue. The expression of miR-124-3p and miR-128-1 decreased in astrocytomas than in normal brain tissue in all grades (p < 0.05 in both cases), and this reduction was most evident in GIV (407- and 1,469-fold, respectively); however, the expression of the precursor forms pre-miR-128-1 and pre-miR-221 was higher in GIV (3.5-fold) than in GI. The levels of miR-128-1 were higher in infratentorial tumors than in supratentorial cases (p = 0.006). Finally, the expression of miR-221-3p was higher in non-recurrent tumors and live patients (p = 0.0185 and p = 0.0004, respectively). CONCLUSIONS The low expression of these miRNAs may constitute a potential marker of astrocytomas that correlates with localization, possibly due to alterations in the maturation processes of these miRNAs that produced low mature forms in patients with recurrent pediatric astrocytomas.
Collapse
|
22
|
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13:33. [PMID: 24555688 PMCID: PMC3936914 DOI: 10.1186/1476-4598-13-33] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.
Collapse
Affiliation(s)
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, India.
| |
Collapse
|
23
|
Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol Teratol 2013; 40:46-58. [PMID: 24126255 DOI: 10.1016/j.ntt.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Congenital malformations are a prevalent cause of infant mortality in the United States and their induction has been linked to a variety of factors, including exposure to teratogens. However, the molecular mechanisms of teratogenicity are not fully understood. MicroRNAs are an important group of small, non-coding RNAs that regulate mRNA expression. MicroRNA roles in early embryonic development are well established, and their disruption during development can cause abnormalities. We hypothesized that developmental exposure to teratogens such as valproic acid alters microRNA expression profiles in developing embryos. Valproic acid is an anticonvulsant and mood-stabilizing drug used to treat epilepsy, bipolar disorder and migraines. To examine the effects of valproic acid on microRNA expression during development, we used zebrafish embryos as a model vertebrate developmental system. Zebrafish embryos were continuously exposed to valproic acid (1mM) or vehicle control (ethanol) starting from 4h post-fertilization (hpf) and sampled at 48 and 96hpf to determine the miRNA expression profiles prior to and after the onset of developmental defects. At 96hpf, 95% of the larvae showed skeletal deformities, abnormal swimming behavior, and pericardial effusion. Microarray expression profiling was done using Agilent zebrafish miRNA microarrays. Microarray results revealed changes in miRNA expression at both time points. Thirteen miRNAs were differentially expressed at 48hpf and 22 miRNAs were altered at 96hpf. Among them, six miRNAs (miR-16a, 18c, 122, 132, 457b, and 724) were common to both time points. Bioinformatic target prediction and examination of published literature revealed that these miRNAs target several genes involved in the normal functioning of the central nervous system. These results suggest that the teratogenic effects of valproic acid could involve altered miRNA expression.
Collapse
|
24
|
Three generic bistable scenarios of the interplay of voltage pulses and gene expression in neurons. Neural Netw 2013; 44:51-63. [DOI: 10.1016/j.neunet.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/05/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
|
25
|
Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 2013; 23:602-11. [PMID: 22925464 DOI: 10.1016/j.euroneuro.2012.06.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/27/2012] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are potent modulators of protein expression that play key roles in brain pathways regulating neurogenesis and synaptic plasticity. These small RNAs may be critical for the pathophysiology of mental disorders and may influence the effectiveness of psychotropic drugs. To investigate the possible involvement of miRNAs in the mechanism of action of antidepressants (AD), we conducted a whole-miRNome quantitative analysis with qRT-PCR of the changes in the blood of 10 depressed subjects after 12 weeks of treatment with escitalopram. Thirty miRNAs were differentially expressed after the AD treatment: 28 miRNAs were up-regulated, and 2 miRNAs were strongly down-regulated. miRNA target gene prediction and functional annotation analysis showed that there was a significant enrichment in several pathways associated with neuronal brain function (such as neuroactive ligand-receptor interaction, axon guidance, long-term potentiation and depression), supporting the hypothesis that the differentially regulated miRNAs may be involved in the AD mechanism.
Collapse
|
26
|
MicroRNAs in Cerebral Ischemia. Stroke Res Treat 2013; 2013:276540. [PMID: 23533957 PMCID: PMC3606790 DOI: 10.1155/2013/276540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/09/2013] [Accepted: 01/24/2013] [Indexed: 01/08/2023] Open
Abstract
The risk of ischemic stroke increases substantially with age, making it the third leading cause of death and the leading cause of long-term disability in the world. Numerous studies demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. Current studies found that microRNAs (miRNAs or miRs) are also closely related to the pathological process of stroke. miRNAs are a group of short, noncoding RNA molecules playing important role in posttranscriptional regulation of gene expression and they have emerged as regulators of ischemic preconditioning and ischemic postconditioning. Here we give an overview of the expression and function of miRNAs in the brain, miRNAs as biomarkers during cerebral ischemia, and clinical applications and limitations of miRNAs. Future prospects of miRNAs are also discussed.
Collapse
|
27
|
Modulation by cocaine of dopamine receptors through miRNA-133b in zebrafish embryos. PLoS One 2012; 7:e52701. [PMID: 23285158 PMCID: PMC3528707 DOI: 10.1371/journal.pone.0052701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 11/19/2012] [Indexed: 01/11/2023] Open
Abstract
The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction.
Collapse
|
28
|
Wang E, Cambi F. MicroRNA expression in mouse oligodendrocytes and regulation of proteolipid protein gene expression. J Neurosci Res 2012; 90:1701-12. [PMID: 22504928 DOI: 10.1002/jnr.23055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Overexpression of the major myelin proteolipid protein (PLP) is detrimental to brain development and function and is the most common cause of Pelizaeus-Merzbacher disease. microRNA (miRNA), small, noncoding RNAs, have been shown to play critical roles in oligodendrocyte lineage. In this study, we sought to investigate whether miRNAs control PLP abundance. To identify candidate miRNAs involved in this regulation, we have examined differentiation-induced changes in the expression of miRNAs in the oligodendroglial cell line Oli-neu and in enhanced green fluorescent protein positive oligodendrocytes ex vivo. We have identified 145 miRNAs that are expressed in oligodendrocyte cell lineage progression. Dicer1 expression decreases in differentiated oligodendrocytes, and knock down of Dicer1 results in changes in miRNAs similar to those associated with differentiation. To identify miRNAs that control the PLP expression, we have selected miRNAs whose expression is lower in differentiated vs. undifferentiated Oli-neu cells and that have one or more binding site(s) in the PLP 3'-untranslated region (3'UTR). The PLP 3'UTR fused to the luciferase gene reduces the activity of the reporter, suggesting that it negatively regulates message stability or translation. Such suppression is relieved by knock down of miR-20a. Overexpression of miR-20a decreases expression of the endogenous PLP in primary oligodendrocytes and of the reporter gene. Deletion or mutation of the putative binding site for miR-20a in the PLP 3'UTR abrogated such effects. Our data indicate that miRNA expression is regulated by Dicer1 levels in differentiated oligodendrocytes and that miR-20a, a component of the cluster that controls oligodendrocyte cell number, regulates PLP gene expression through its 3'UTR.
Collapse
Affiliation(s)
- Erming Wang
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| | | |
Collapse
|
29
|
Neural networks including microRNAs. Neural Netw 2012; 25:200-4. [DOI: 10.1016/j.neunet.2011.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/14/2011] [Accepted: 08/16/2011] [Indexed: 01/14/2023]
|
30
|
Maes OC, Chertkow HM, Wang E, Schipper HM. MicroRNA: Implications for Alzheimer Disease and other Human CNS Disorders. Curr Genomics 2011; 10:154-68. [PMID: 19881909 PMCID: PMC2705849 DOI: 10.2174/138920209788185252] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 02/06/2023] Open
Abstract
Understanding complex diseases such as sporadic Alzheimer disease (AD) has been a major challenge. Unlike the familial forms of AD, the genetic and environmental risks factors identified for sporadic AD are extensive. MicroRNAs are one of the major noncoding RNAs that function as negative regulators to silence or suppress gene expression via translational inhibition or message degradation. Their discovery has evoked great excitement in biomedical research for their promise as potential disease biomarkers and therapeutic targets. Key microRNAs have been identified as essential for a variety of cellular events including cell lineage determination, proliferation, apoptosis, DNA repair, and cytoskeletal organization; most, if not all, acting to fine-tune gene expression at the post-transcriptional level in a host of cellular signaling networks. Dysfunctional microRNA-mediated regulation has been implicated in the pathogenesis of many disease states. Here, the current understanding of the role of miRNAs in the central nervous system is reviewed with emphasis on their impact on the etiopathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Olivier C Maes
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Canada
| | | | | | | |
Collapse
|
31
|
de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta 2011; 699:134-52. [PMID: 21704768 DOI: 10.1016/j.aca.2011.05.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/26/2011] [Accepted: 05/16/2011] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNA) are short (∼22 nucleotides) non-coding RNA molecules that regulate gene expression at the post-transcriptional level. Their expression is specific to cells and tissues and is temporally regulated. miRNAs are known to be involved in developmental and physiological processes, and their dysregulation leads to development of diseases. Since their profiles reflect pathological processes, miRNAs have recently been proposed as being useful in diagnostics as biomarkers of the onset, prognosis and risk of diseases, as well as in the classification of different types of cancer. The establishment of miRNA profiles that are representative of diseases and the detection of different types and levels of miRNA in samples are therefore critical milestones in diagnostics. miRNAs can be detected in blood and body fluids as well as in tissues, thus making non-invasive collection of samples possible. For a method to be useful in diagnostics, it should be simple, inexpensive and highly sensitive. Here, we will review current methods of detecting miRNAs and indicate the advantages and disadvantages of each techniques. We will then summarize some of the clinical evidence for the potential application of miRNAs as biomarkers in diagnostics. We conclude providing some general perspectives on the use of miRNAs in clinical situations, including therapeutic applications.
Collapse
Affiliation(s)
- Mariàngels de Planell-Saguer
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
32
|
Rinkwitz S, Mourrain P, Becker TS. Zebrafish: an integrative system for neurogenomics and neurosciences. Prog Neurobiol 2010; 93:231-43. [PMID: 21130139 DOI: 10.1016/j.pneurobio.2010.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Rapid technological advances over the past decade have moved us closer to a high throughput molecular approach to neurobiology, where we see the merging of neurogenetics, genomics, physiology, imaging and pharmacology. This is the case more in zebrafish than in any other model organism commonly used. Recent improvements in the generation of transgenic zebrafish now allow genetic manipulation and live imaging of neuronal development and function in early embryonic, larval, and adult animals. The sequenced zebrafish genome and comparative genomics give unprecedented insights into genome evolution and its relation to genome structure and function. There is now information on embryonic and larval expression of over 12,000 genes and just under 1000 mutant phenotypes. We review the remarkable similarity of the zebrafish genetic blueprint for the nervous system to that of mammals and assess recent technological advances that make the zebrafish a model of choice for elucidating the development and function of neuronal circuitry, transgene-based neuroanatomy, and small molecule neuropharmacology.
Collapse
Affiliation(s)
- Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 100 Mallett St., Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
33
|
MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 2010; 30:1564-76. [PMID: 20606686 PMCID: PMC2932764 DOI: 10.1038/jcbfm.2010.101] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small RNAs that function as regulators of posttranscriptional gene expression. MicroRNAs are encoded by genes, and processed to form ribonucleoprotein complexes that bind to messenger RNA (mRNA) targets to repress translation or degrade mRNA transcripts. The microRNAs are particularly abundant in the brain where they serve as effectors of neuronal development and maintenance of the neuronal phenotype. They are also expressed in dendrites where they regulate spine structure and function as effectors in synaptic plasticity. MicroRNAs have been evaluated for their roles in brain ischemia, traumatic brain injury, and spinal cord injury, and in functional recovery after ischemia. They also serve as mediators in the brain's response to ischemic preconditioning that leads to endogenous neuroprotection. In addition, microRNAs are implicated in neurodegenerative disorders, including Alzheimer's, Huntington, Parkinson, and Prion disease. The discovery of microRNAs has expanded the potential for human diseases to arise from genetic mutations in microRNA genes or sequences within their target mRNAs. This review discusses microRNA discovery, biogenesis, mechanisms of gene regulation, their expression and function in the brain, and their roles in brain ischemia and injury, neuroprotection, and neurodegeneration.
Collapse
|
34
|
Smith B, Treadwell J, Zhang D, Ly D, McKinnell I, Walker PR, Sikorska M. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One 2010; 5:e11109. [PMID: 20559549 PMCID: PMC2886071 DOI: 10.1371/journal.pone.0011109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor), miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. Principal Findings We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2) cells during retinoic acid (RA)-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. Conclusions In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis.
Collapse
Affiliation(s)
- Brandon Smith
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fine-tuning the brain: MicroRNAs. Front Neuroendocrinol 2010; 31:128-33. [PMID: 19683017 DOI: 10.1016/j.yfrne.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/21/2023]
Abstract
The brain is of bewildering complexity and numerous genes and signaling molecules have been described that affect the architecture and functioning of specific neuronal circuits. Recent evidence from genome analysis revealed the existence of a large group of novel RNA molecules with unexpected properties. One such group is called microRNAs, which are small 21-23 nucleotides RNA molecules that are transcribed by the genome. However, they are not translated into proteins but rather control translation of coding mRNA. Particularly in the brain, numerous different microRNAs are expressed in a cell type specific fashion both during development and in adulthood. Aberrant microRNA expression has been implicated in several human diseases including CNS diseases. The aim of this review is to emphasize their role in the development of the brain and their function. In addition, we highlight recent findings on the evolution of mammalian microRNAs and their effect on steroid signaling in the brain.
Collapse
|
36
|
MicroRNAs as a target for novel antipsychotics: a systematic review of an emerging field. Int J Neuropsychopharmacol 2010; 13:395-404. [PMID: 19849891 DOI: 10.1017/s1461145709990800] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The psychotic disorders of schizophrenia and bipolar affective disorder are among the most disabling of all medical conditions. Current drugs used to treat psychosis largely target monoamine receptors. Here we explore the possibility of developing new antipsychotics by targeting specific microRNAs (miRNAs). These are single-stranded RNA molecules, 21-23 nt in length that are not translated into proteins and function as regulatory molecules. A keyword search was performed using Medline, the ISI Web of Knowledge and Scopus for papers published up to June 2009. The search shows that to date studies of miRNAs have been far more abundant in schizophrenia than in bipolar affective disorder and the view that non-protein-coding genes have an important regulatory role with implications for the genetic liability to psychosis is gaining greater acceptance. The most promising miRNAs so far identified include miR-181, miR-346 and miR-195 in schizophrenia and miR-34a and miR-144 in bipolar disorder. It has been argued that miR-219 may be involved in both disorders. miRNAs offer an exciting potential for developing new antipsychotics, although research in the field is at an early stage. It will require a considerable advance in smart technologies to deliver either mimics or antagomirs to the appropriate site of action, but the development of selective small conventional molecules may negate this requirement.
Collapse
|
37
|
Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol 2010; 517:333-49. [PMID: 19760739 DOI: 10.1002/cne.22153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural stem cells (NSCs) in the murine subventricular zone (SVZ) niche allow life-long neurogenesis. During the first postnatal month and throughout aging, the decrease of neuroblasts and the rise of astrocytes results in diminished neurogenesis and increased astrocyte:neuron ratio. Also, a different neurogenic activity characterizes the SVZ periventricular region (LV, lateral ventricle) as compared to its rostral extension (RE). In order to investigate whether and to what extent these physiological modifications may be ascribed to intrinsic changes of the endogenous NSC/progenitor features, we performed a functional analysis on NSCs isolated and cultured from LV and RE tissues at distinct postnatal stages that are marked by striking modifications to the SVZ niche in vivo. We evaluated the effect of age and brain region on long-term proliferation and multipotency, and characterized the cell type composition of NSC-derived progeny, comparing this make-up to that of region- and age-matched primary neural cultures. Furthermore, we analyzed the effect of prolonged in vitro expansion on NSC functional properties. We documented age- and region-dependent differences on the clonogenic efficiency and on the long-term proliferative capacity of NSCs. Also, we found age- and region-dependent quantitative changes in the cell composition of NSC progeny (decreased quantity of neurons and oligodendrocytes; increased amount of astroglial cells) and these differences were maintained in long-term cultured NSC populations. Overall, these data strengthen the hypothesis that age- and region-dependent differences in neurogenesis (observed in vivo) may be ascribed to the changes in the intrinsic developmental program of the NSC populations.
Collapse
Affiliation(s)
- Angela Gritti
- San Raffaele Scientific Institute, Telethon Institute for Gene Therapy (HSR-TIGET), Milan 20132, Italy.
| | | | | | | |
Collapse
|
38
|
Wang B, Li S, Qi HH, Chowdhury D, Shi Y, Novina CD. Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol 2009; 16:1259-66. [PMID: 19946268 DOI: 10.1038/nsmb.1712] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/30/2009] [Indexed: 12/12/2022]
Abstract
Argonaute (AGO) proteins bind to small RNAs and mediate small RNA-induced silencing in eukaryotes. Using a minimal in vitro system, we show that bacterially expressed human AGO1 and AGO2 but not AGO3 and AGO4 possess strand-dissociating activity of microRNA (miRNA) duplexes. Both AGO1 and AGO2 function as RNA chaperones, capable of performing multiple rounds of strand dissociation. Unexpectedly, both AGO1 and AGO2 demonstrate passenger strand cleavage activity of a small interfering RNA (siRNA) duplex, but only AGO2 has target RNA cleavage activity. These observations indicate that passenger strand and mRNA endonuclease activities are mechanistically distinct. We further validate these observations in mammalian extracts and cultured mammalian cells, in which we demonstrate that AGO1 uses only miRNA duplexes when assembling translational repression-competent complexes, whereas AGO2 can use both miRNA and siRNA duplexes. We show that passenger strand cleavage and RNA chaperone activities that are intrinsic to both AGO1 and AGO2 are sufficient for RNA-induced silencing complex (RISC) loading.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cui JG, Zhao Y, Sethi P, Li YY, Mahta A, Culicchia F, Lukiw WJ. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neurooncol 2009; 98:297-304. [PMID: 19941032 DOI: 10.1007/s11060-009-0077-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 11/16/2009] [Indexed: 12/31/2022]
Abstract
High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.
Collapse
Affiliation(s)
- J G Cui
- LSU Neuroscience Center & Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
|