1
|
Fulcher JM, Swensen AC, Chen YC, Verchere CB, Petyuk VA, Qian WJ. Top-Down Proteomics of Mouse Islets With Beta Cell CPE Deletion Reveals Molecular Details in Prohormone Processing. Endocrinology 2023; 164:bqad160. [PMID: 37967211 PMCID: PMC10650973 DOI: 10.1210/endocr/bqad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 11/17/2023]
Abstract
Altered prohormone processing, such as with proinsulin and pro-islet amyloid polypeptide (proIAPP), has been reported as an important feature of prediabetes and diabetes. Proinsulin processing includes removal of several C-terminal basic amino acids and is performed principally by the exopeptidase carboxypeptidase E (CPE), and mutations in CPE or other prohormone convertase enzymes (PC1/3 and PC2) result in hyperproinsulinemia. A comprehensive characterization of the forms and quantities of improperly processed insulin and other hormone products following Cpe deletion in pancreatic islets has yet to be attempted. In the present study we applied top-down proteomics to globally evaluate the numerous proteoforms of hormone processing intermediates in a β-cell-specific Cpe knockout mouse model. Increases in dibasic residue-containing proinsulin and other novel proteoforms of improperly processed proinsulin were found, and we could classify several processed proteoforms as novel substrates of CPE. Interestingly, some other known substrates of CPE remained unaffected despite its deletion, implying that paralogous processing enzymes such as carboxypeptidase D (CPD) can compensate for CPE loss and maintain near normal levels of hormone processing. In summary, our quantitative results from top-down proteomics of islets provide unique insights into the complexity of hormone processing products and the regulatory mechanisms.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Adam C Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi-Chun Chen
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Vladislav A Petyuk
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
2
|
Fricker LD, Margolis EB, Gomes I, Devi LA. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol Pharmacol 2020; 98:96-108. [PMID: 32487735 PMCID: PMC7330675 DOI: 10.1124/mol.120.119388] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
In the mid-1970s, an intense race to identify endogenous substances that activated the same receptors as opiates resulted in the identification of the first endogenous opioid peptides. Since then, >20 peptides with opioid receptor activity have been discovered, all of which are generated from three precursors, proenkephalin, prodynorphin, and proopiomelanocortin, by sequential proteolytic processing by prohormone convertases and carboxypeptidase E. Each of these peptides binds to all three of the opioid receptor types (μ, δ, or κ), albeit with differing affinities. Peptides derived from proenkephalin and prodynorphin are broadly distributed in the brain, and mRNA encoding all three precursors are highly expressed in some peripheral tissues. Various approaches have been used to explore the functions of the opioid peptides in specific behaviors and brain circuits. These methods include directly administering the peptides ex vivo (i.e., to excised tissue) or in vivo (in animals), using antagonists of opioid receptors to infer endogenous peptide activity, and genetic knockout of opioid peptide precursors. Collectively, these studies add to our current understanding of the function of endogenous opioids, especially when similar results are found using different approaches. We briefly review the history of identification of opioid peptides, highlight the major findings, address several myths that are widely accepted but not supported by recent data, and discuss unanswered questions and future directions for research. SIGNIFICANCE STATEMENT: Activation of the opioid receptors by opiates and synthetic drugs leads to central and peripheral biological effects, including analgesia and respiratory depression, but these may not be the primary functions of the endogenous opioid peptides. Instead, the opioid peptides play complex and overlapping roles in a variety of systems, including reward pathways, and an important direction for research is the delineation of the role of individual peptides.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Elyssa B Margolis
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
3
|
Molecular pathway analysis associates alterations in obesity-related genes and antipsychotic-induced weight gain. Acta Neuropsychiatr 2020; 32:72-83. [PMID: 31619305 DOI: 10.1017/neu.2019.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Antipsychotics often induce excessive weight gain. We hypothesised that individuals with genetic variations related to known obesity-risk genes have an increased risk of excessive antipsychotic-induced weight gain (AIWG). This hypothesis was tested in a subset of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) trial data set. METHODS The CATIE trial compared effects and side effects of five different antipsychotics through an 18-month period. Based on the maximum weight gain recorded, excessive weight gain was defined as >7% weight gain. Cytoscape and GeneMANIA were instrumental in composing a molecular pathway from eight selected genes linked to obesity. Genetic information on a total of 495.172 single-nucleotide polymorphisms (SNPs) were available from 765 (556 males) individuals. Enrichment test was conducted through ReactomePA and Bioconductor. A permutation test was performed, testing the generated pathway against 105 permutated pathways (p ≤ 0.05). In addition, a standard genome-wide association study (GWAS) analysis was performed. RESULT GWAS analysis did not detect significant differences related to excessive weight gain. The pathway generated contained 28 genes. A total of 2067 SNPs were significantly expressed (p < 0.01) within this pathway when comparing excessive weight gainers to the rest of the sample. Affected genes including PPARG and PCSK1 were not previously related to treatment-induced weight gain. CONCLUSIONS The molecular pathway composed from high-risk obesity genes was shown to overlap with genetics of patients who gained >7% weight gain during the CATIE trial. This suggests that genes related to obesity compose a pathway of increased risk of excessive AIWG. Further independent analyses are warranted that may confirm or clarify the possible reasoning behind.
Collapse
|
4
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Prieto I, Villarejo AB, Segarra AB, Wangensteen R, Banegas I, de Gasparo M, Vanderheyden P, Zorad S, Vives F, Ramírez-Sánchez M. Tissue distribution of CysAP activity and its relationship to blood pressure and water balance. Life Sci 2015; 134:73-8. [DOI: 10.1016/j.lfs.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/02/2015] [Accepted: 04/18/2015] [Indexed: 12/31/2022]
|
6
|
Epistasis between polymorphisms in PCSK1 and DBH is associated with premature ovarian failure. Menopause 2015; 21:1249-53. [PMID: 24618767 DOI: 10.1097/gme.0000000000000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study examined whether epistasis between single nucleotide polymorphisms (SNPs) within proprotein convertase subtilisin/kexin type 1 (PCSK1) and dopamine β-hydroxylase (DBH) genes is associated with premature ovarian failure (POF). METHODS One hundred twenty women with POF and 222 female controls were recruited for this study. To genotype SNPs within PCSK1 and DBH, we used a GoldenGate assay with VeraCode technology, which uses an allele-specific primer extension method. RESULTS Two SNPs (rs155979 and rs3762986) within PCSK1 and one SNP (rs1611114) within DBH, which were located in the 5' flanking region, were involved in synergistic interactions. The C allele in the rs155979 SNP showed an increased risk of POF in a dominant model when AA genotype in the rs1611114 SNP was present (odds ratio, 3.60; 95% CI, 1.82-7.14; P = 0.00024), whereas the G allele in the rs1611114 SNP showed a reduced risk of POF in a dominant model when at least one C allele at the rs155979 SNP was present (odds ratio, 0.24; 95% CI, 0.11-0.51; P = 0.00018) or one G allele at the rs3762986 SNP was present (odds ratio, 0.33; 95% CI, 0.19-0.60; P = 0.00023). CONCLUSIONS Epistases between SNPs within PCSK1 and DBH genes are significantly associated with susceptibility or resistance to POF.
Collapse
|
7
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Pailleux F, Vachon P, Lemoine J, Beaudry F. Targeted liquid chromatography quadrupole ion trap mass spectrometry analysis of tachykinin related peptides reveals significant expression differences in a rat model of neuropathic pain. Neuropeptides 2013; 47:261-71. [PMID: 23490005 DOI: 10.1016/j.npep.2013.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/26/2022]
Abstract
Animal models are widely used to perform basic scientific research in pain. The rodent chronic constriction injury (CCI) model is widely used to study neuropathic pain. Animals were tested prior and after CCI surgery using behavioral tests (von Frey filaments and Hargreaves test) to evaluate pain. The brain and the lumbar enlargement of the spinal cord were collected from neuropathic and normal animals. Tachykinin related peptides were analyzed by high performance liquid chromatography quadrupole ion trap mass spectrometry. Our results reveal that the β-tachykinin₅₈₋₇₁, SP and SP₃₋₁₁ up-regulation are closely related to pain behavior. The spinal β-tachykinin₅₈₋₇₁, SP and SP₃₋₁₁ concentrations were significantly up-regulated in neuropathic animals compared with normal animals (p<0.001; p<0.001 and p<0.05, respectively). In contrast, the spinal SP5₅₋₁₁ concentration in neuropathic animals revealed a significant down-regulation compared with normal animals (p<0.05). The brain β-tachykinin₅₈₋₇₁ and SP concentrations were significantly up-regulated (p<0.05 and p<0.001, respectively). Interestingly, no significant concentration differences were observed in the spinal cord and brain for NKA, β-tachykinin₅₈₋₇₁, SP₁₋₇ and SP₆₋₁₁ (p>0.05). The β-tachykinin₅₈₋₇₁, SP and C-terminal SP metabolites could potentially serve as biomarkers in early drug discovery.
Collapse
Affiliation(s)
- Floriane Pailleux
- Groupe de Recherche en Pharmacologie Animal du Québec-GREPAQ, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
9
|
|