1
|
Windus LCE, Matigian N, Avery VM. Induction of Reactive Bone Stromal Fibroblasts in 3D Models of Prostate Cancer Bone Metastases. BIOLOGY 2023; 12:861. [PMID: 37372146 DOI: 10.3390/biology12060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. It is the aim of the current study to establish a biologically relevant 3D in vitro model that mimics the cellular and molecular profiles of MAFs found in vivo. Using 3D in vitro cell culture models, the bone-derived fibroblast cell line, HS-5, was treated with conditioned media from metastatic-derived PCa cell lines, PC3 and MDA-PCa 2b, or mouse-derived fibroblasts 3T3. Two corresponding reactive cell lines were propagated: HS5-PC3 and HS5-MDA, and evaluated for alterations in morphology, phenotype, cellular behaviour, plus protein and genomic profiles. HS5-PC3 and HS5-MDA displayed distinct alterations in expression levels of N-Cadherin, non-functional E-Cadherin, alpha-smooth muscle actin (α-SMA), Tenascin C, and vimentin, along with transforming growth factor receptor expression (TGF β R1 and R2), consistent with subpopulations of MAFs reported in vivo. Transcriptomic analysis revealed a reversion of HS5-PC3 towards a metastatic phenotype with an upregulation in pathways known to regulate cancer invasion, proliferation, and angiogenesis. The exploitation of these engineered 3D models could help further unravel the novel biology regulating metastatic growth and the role fibroblasts play in the colonisation process.
Collapse
Affiliation(s)
- Louisa C E Windus
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
| | - Nicholas Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression. Hum Cell 2022; 35:1560-1576. [PMID: 35907138 DOI: 10.1007/s13577-022-00748-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC50) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.
Collapse
|
3
|
Yamada Y, Miyamoto T, Higuchi S, Ono M, Kobara H, Asaka R, Ando H, Suzuki A, Shiozawa T. cDNA expression library screening revealed novel functional genes involved in clear cell carcinogenesis of the ovary in vitro. J OBSTET GYNAECOL 2020; 41:100-105. [PMID: 32157937 DOI: 10.1080/01443615.2020.1716310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to identify genes involved in the pathogenesis of clear cell carcinoma of the ovary (CCC), functional screening using a cDNA expression library was performed. We extracted mRNA from a CCC cell line (RMG-1), established a cDNA library using a retroviral vector, transfected that library into mouse NIH3T3 cells and sequenced the resultant foci. The tissue-type specific expression of isolated genes and their transforming activities were evaluated. Seven genes were isolated. Of these genes, the mRNA expression of SEC61B and DVL1 is significantly stronger in CCC than in other histological types (p < .05). Immunohistochemical staining reveals the stronger expression of SEC61B and C1ORF38 than normal ovarian tissues (p < .05). Focus formation is confirmed by the transfection of SEC61B, C1ORF38, and DVL1 into NIH3T3 cells. The present study identified novel genes including SEC61B, C1ORF38, and DVL1, involved in the pathogenesis of CCC. These genes may be additional therapeutic targets for CCC.Impact statementWhat is already known on this subject? Several important genetic abnormalities, including ARID1A and PIK3CA mutations, have been reported in ovarian clear cell carcinoma (CCC).What the results of this study add? SEC61B, C1ORF38, and DVL1 were newly detected as candidate genes involved in ovarian clear cell carcinogenesis.What the implications are of these findings for clinical practice and/or further research? Functional screening using a cDNA expression library may be a useful technique to identify functional genes for pathogenesis. The information obtained using this technique may provide new therapeutic targets of CCC.
Collapse
Affiliation(s)
- Yasushi Yamada
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Shotaro Higuchi
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Hisanori Kobara
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Hirofumi Ando
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Akihisa Suzuki
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| |
Collapse
|
4
|
Naletova I, Satriano C, Curci A, Margiotta N, Natile G, Arena G, La Mendola D, Nicoletti VG, Rizzarelli E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018; 9:36289-36316. [PMID: 30555630 PMCID: PMC6284747 DOI: 10.18632/oncotarget.26346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Alessandra Curci
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Nicola Margiotta
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giovanni Natile
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Giuseppe Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| |
Collapse
|
5
|
Li Q, Zhou T, Wu F, Li N, Wang R, Zhao Q, Ma YM, Zhang JQ, Ma BL. Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab Rev 2018; 50:430-447. [PMID: 30270675 DOI: 10.1080/03602532.2018.1512614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
After administration, drug molecules usually enter target cells to access their intracellular targets. In eukaryotic cells, these targets are often located in organelles, including the nucleus, endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, and peroxisomes. Each organelle type possesses unique biological features. For example, mitochondria possess a negative transmembrane potential, while lysosomes have an intraluminal delta pH. Other properties are common to several organelle types, such as the presence of ATP-binding cassette (ABC) or solute carrier-type (SLC) transporters that sequester or pump out xenobiotic drugs. Studies on subcellular drug distribution are critical to understand the efficacy and toxicity of drugs along with the body's resistance to them and to potentially offer hints for targeted subcellular drug delivery. This review summarizes the results of studies from 1990 to 2017 that examined the subcellular distribution of small molecular drugs. We hope this review will aid in the understanding of drug distribution within cells.
Collapse
Affiliation(s)
- Qiao Li
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ting Zhou
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Fei Wu
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Na Li
- c Department of Chinese materia medica , School of Pharmacy , Shanghai , China
| | - Rui Wang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Qing Zhao
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yue-Ming Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ji-Quan Zhang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bing-Liang Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
6
|
Ravindranathan P, Pasham D, Balaji U, Cardenas J, Gu J, Toden S, Goel A. A combination of curcumin and oligomeric proanthocyanidins offer superior anti-tumorigenic properties in colorectal cancer. Sci Rep 2018; 8:13869. [PMID: 30218018 PMCID: PMC6138725 DOI: 10.1038/s41598-018-32267-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023] Open
Abstract
Combining anti-cancer agents in cancer therapies is becoming increasingly popular due to improved efficacy, reduced toxicity and decreased emergence of resistance. Here, we test the hypothesis that dietary agents such as oligomeric proanthocyanidins (OPCs) and curcumin cooperatively modulate cancer-associated cellular mechanisms to inhibit carcinogenesis. By a series of in vitro assays in colorectal cancer cell lines, we showed that the anti-tumorigenic properties of the OPCs-curcumin combination were superior to the effects of individual compounds. By RNA-sequencing based gene-expression profiling in six colorectal cancer cell lines, we identified the cooperative modulation of key cancer-associated pathways such as DNA replication and cell cycle pathways. Moreover, several pathways, including protein export, glutathione metabolism and porphyrin metabolism were more effectively modulated by the combination of OPCs and curcumin. We validated genes belonging to these pathways, such as HSPA5, SEC61B, G6PD, HMOX1 and PDE3B to be cooperatively modulated by the OPCs-curcumin combination. We further confirmed that the OPCs-curcumin combination more potently suppresses colorectal carcinogenesis and modulated expression of genes identified by RNA-sequencing in mice xenografts and in colorectal cancer patient-derived organoids. Overall, by delineating the cooperative mechanisms of action of OPCs and curcumin, we make a case for the clinical co-administration of curcumin and OPCs as a treatment therapy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Preethi Ravindranathan
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Divya Pasham
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Uthra Balaji
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Mains RE, Blaby-Haas C, Rheaume BA, Eipper BA. Changes in Corticotrope Gene Expression Upon Increased Expression of Peptidylglycine α-Amidating Monooxygenase. Endocrinology 2018; 159:2621-2639. [PMID: 29788427 PMCID: PMC6287594 DOI: 10.1210/en.2018-00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Throughout evolution, secretion has played an essential role in the ability of organisms and single cells to survive in the face of a changing environment. Peptidylglycine α-amidating monooxygenase (PAM) is an integral membrane monooxygenase, first identified for its role in the biosynthesis of neuroendocrine peptides released by the regulated secretory pathway. PAM was subsequently identified in Chlamydomonas reinhardtii, a unicellular green alga, where it plays an essential role in constitutive secretion and in ciliogenesis. Reduced expression of C. reinhardtii PAM resulted in significant changes in secretion and ciliogenesis. Hence, a screen was performed for transcripts and proteins whose expression responded to changes in PAM levels in a mammalian corticotrope tumor cell line. The goal was to identify genes not previously known to play a role in secretion. The screen identified transcription factors, peptidyl prolyl isomerases, endosomal/lysosomal proteins, and proteins involved in tissue-specific responses to glucose and amino acid availability that had not previously been recognized as relevant to the secretory pathway. Perhaps reflecting the dependence of PAM on molecular oxygen, many PAM-responsive genes are known to be hypoxia responsive. The data highlight the extent to which the performance of the secretory pathway may be integrated into a wide diversity of signaling pathways.
Collapse
Affiliation(s)
- Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Correspondence: Richard E. Mains, PhD, University of Connecticut Health Center, 263 Farmington
Avenue, Farmington, Connecticut 06030. E-mail:
| | | | - Bruce A Rheaume
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
| | - Betty A Eipper
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Molecular Biology & Biophysics, University of Connecticut, Farmington,
Connecticut
| |
Collapse
|
8
|
Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One 2017; 12:e0187735. [PMID: 29140992 PMCID: PMC5687707 DOI: 10.1371/journal.pone.0187735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs.
Collapse
|
9
|
Organ-specific regulation of ATP7A abundance is coordinated with systemic copper homeostasis. Sci Rep 2017; 7:12001. [PMID: 28931909 PMCID: PMC5607234 DOI: 10.1038/s41598-017-11961-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/01/2017] [Indexed: 01/31/2023] Open
Abstract
Copper (Cu) is an essential cofactor for various enzymatic activities including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Consequently, Cu dysregulation is associated with fatal neonatal disease, liver and cardiac dysfunction, and anemia. While the Cu transporter ATP7A plays a major role in both intestinal Cu mobilization to the periphery and prevention of Cu over-accumulation, it is unclear how regulation of ATP7A contributes to Cu homeostasis in response to systemic Cu fluctuation. Here we show, using Cu-deficient mouse models, that steady-state levels of ATP7A are lower in peripheral tissues (including the heart, spleen, and liver) under Cu deficiency and that subcutaneous administration of Cu to these animals restore normal ATP7A levels in these tissues. Strikingly, ATP7A in the intestine is regulated in the opposite manner - low systemic Cu increases ATP7A while subcutaneous Cu administration decreases ATP7A suggesting that intestine-specific non-autonomous regulation of ATP7A abundance may serve as a key homeostatic control for Cu export into the circulation. Our results support a systemic model for how a single transporter can be inversely regulated in a tissue-specific manner to maintain organismal Cu homeostasis.
Collapse
|
10
|
Copper transporter 1 in human colorectal cancer cell lines: Effects of endogenous and modified expression on oxaliplatin cytotoxicity. J Inorg Biochem 2017; 177:249-258. [PMID: 28551160 DOI: 10.1016/j.jinorgbio.2017.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 11/23/2022]
Abstract
Oxaliplatin-based chemotherapy is the mainstay for the treatment of advanced colorectal cancer. Copper transporter proteins have been implicated in the transport of platinum-based anticancer drugs, but their expression in human colorectal cancer cell lines and roles in controlling their sensitivity to oxaliplatin are not well studied or understood. The endogenous and modified expression of copper uptake transporter 1 (hCTR1) was studied in a panel of human colorectal cancer cell lines (DLD-1, SW620, HCT-15 and COLO205) with ~20-fold variation in oxaliplatin sensitivity. hCTR1 protein was expressed more abundantly than ATP7A and ATP7B proteins, but with broadly similar levels and patterns of expression across four colorectal cancer cell lines. In a colorectal cancer cell-line background (DLD-1), stable transfection of the hCtr1 gene enhanced hCTR1 protein expression and increased the sensitivity of the cells to the cytotoxicity of copper and oxaliplatin. Treatment with copper chelators (ammonium tetrathiomolybdate, bathocuproinedisulfonic acid and D-penicillamine) increased expression of hCTR1 protein in DLD-1 and SW620 cells, and potentiated the cytotoxicity of oxaliplatin in DLD-1 but not SW620 cells. Treatment with copper chloride altered neither the expression of copper transporters nor cytotoxicity of oxaliplatin in colorectal cancer lines. In conclusion, human colorectal cancer cell lines consistently express hCTR1 protein despite their variable sensitivity to oxaliplatin. Genetic or pharmacological modification of hCTR1 protein expression may potentiate oxaliplatin sensitivity in some but not all colorectal cancer cell lines.
Collapse
|
11
|
Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M, Abad A. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol Cancer Ther 2015; 14:1767-76. [PMID: 26184483 DOI: 10.1158/1535-7163.mct-14-0636] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023]
Abstract
Oxaliplatin was the first platinum drug with proven activity against colorectal tumors, becoming a standard in the management of this malignancy. It is also considered for the treatment of pancreatic and gastric cancers. However, a major reason for treatment failure still is the existence of tumor intrinsic or acquired resistance. Consequently, it is important to understand the molecular mechanisms underlying the appearance of this phenomenon to find ways of circumventing it and to improve and optimize treatments. This review will be focused on recent discoveries about oxaliplatin tumor-related resistance mechanisms, including alterations in transport, detoxification, DNA damage response and repair, cell death (apoptotic and nonapoptotic), and epigenetic mechanisms.
Collapse
Affiliation(s)
- Eva Martinez-Balibrea
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain.
| | - Anna Martínez-Cardús
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Alba Ginés
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Vicenç Ruiz de Porras
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Laura Layos
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - José Luis Manzano
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - Cristina Bugés
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| | - Sara Bystrup
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Albert Abad
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Quail JF, Tsai CY, Howell SB. Characterization of a monoclonal antibody capable of reliably quantifying expression of human Copper Transporter 1 (hCTR1). J Trace Elem Med Biol 2014; 28:151-159. [PMID: 24447817 PMCID: PMC3989404 DOI: 10.1016/j.jtemb.2013.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Abstract
Human copper transporter 1 (hCTR1) is the high-affinity copper influx transporter in mammalian cells that also mediates the influx of cisplatin. Loss of hCTR1 expression has been implicated in the development of resistance to this cancer chemotherapeutic agent. It has turned out to be very difficult to develop antibodies to hCTR1 and polyclonal antibodies produced by different laboratories have yielded conflicting results. We have characterized a newly-available rabbit monoclonal antibody that reacts with an epitope on the N-terminal end of hCTR1 that now permits rigorous identification and quantification of hCTR1 using Western blot analysis. Postnuclear membrane (PNM) preparations made from cells engineered to express high levels of myc-tagged hCTR1, and cells in which the expression of hCTR1 was knocked down, were used to characterize the antibody. The identity of the bands detected was confirmed by immunoprecipitation, surface biotinylation and deglycosylation of myc-tagged hCTR1. Despite the specificity expected of a monoclonal antibody, the anti-hCTR1 detected a variety of bands in whole cell lysates (WCL), which made it difficult to quantify hCTR1. This problem was overcome by isolating post-nuclear membranes and using these for further analysis. Three bands were identified using this antibody in PNM preparations that migrated at 28, 33-35 and 62-64kDa. Multiple lines of evidence presented here suggest that the 33-35 and 62-64kDa bands are hCTR1 whereas the 28kDa band is a cross-reacting protein of unknown identify. The 33-35kDa band is consistent with the expected MW of the glycosylated hCTR1 monomer. This analysis now permits rigorous identification and quantification of hCTR1.
Collapse
Affiliation(s)
- Jacob F Quail
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States
| | - Cheng-Yu Tsai
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States
| | - Stephen B Howell
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
13
|
Varotto L, Domeneghetti S, Rosani U, Manfrin C, Cajaraville MP, Raccanelli S, Pallavicini A, Venier P. DNA damage and transcriptional changes in the gills of mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg). PLoS One 2013; 8:e54602. [PMID: 23355883 PMCID: PMC3552849 DOI: 10.1371/journal.pone.0054602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs.
Collapse
Affiliation(s)
- Laura Varotto
- Department of Biology, University of Padova, Padova, Italy
| | | | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Miren P. Cajaraville
- Department of Zoology & Cell Biology, University of the Basque Country UPV/EHU, Bilbao, Basque Country, Spain
| | | | | | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Ciarimboli G. Membrane transporters as mediators of Cisplatin effects and side effects. SCIENTIFICA 2012; 2012:473829. [PMID: 24278698 PMCID: PMC3820462 DOI: 10.6064/2012/473829] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/23/2012] [Indexed: 06/02/2023]
Abstract
Transporters are important mediators of specific cellular uptake and thus, not only for effects, but also for side effects, metabolism, and excretion of many drugs such as cisplatin. Cisplatin is a potent cytostatic drug, whose use is limited by its severe acute and chronic nephro-, oto-, and peripheral neurotoxicity. For this reason, other platinum derivatives, such as carboplatin and oxaliplatin, with less toxicity but still with antitumoral action have been developed. Several transporters, which are expressed on the cell membranes, have been associated with cisplatin transport across the plasma membrane and across the cell: the copper transporter 1 (Ctr1), the copper transporter 2 (Ctr2), the P-type copper-transporting ATPases ATP7A and ATP7B, the organic cation transporter 2 (OCT2), and the multidrug extrusion transporter 1 (MATE1). Some of these transporters are also able to accept other platinum derivatives as substrate. Since membrane transporters display a specific tissue distribution, they can be important molecules that mediate the entry of platinum derivatives in target and also nontarget cells possibly mediating specific effects and side effects of the chemotherapeutic drug. This paper summarizes the literature on toxicities of cisplatin compared to that of carboplatin and oxaliplatin and the interaction of these platinum derivatives with membrane transporters.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimentelle Nephrologie, Medizinische Klinik D, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, 48149 Münster, Germany
| |
Collapse
|