1
|
Wojciechowski MN, McKenzie CE, Hung A, Kuanyshbek A, Soh MS, Reid CA, Forster IC. Different fluorescent labels report distinct components of spHCN channel voltage sensor movement. J Gen Physiol 2024; 156:e202413559. [PMID: 38968404 PMCID: PMC11223168 DOI: 10.1085/jgp.202413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
We used voltage clamp fluorometry to probe the movement of the S4 helix in the voltage-sensing domain of the sea urchin HCN channel (spHCN) expressed in Xenopus oocytes. We obtained markedly different fluorescence responses with either ALEXA-488 or MTS-TAMRA covalently linked to N-terminal Cys332 of the S4 helix. With hyperpolarizing steps, ALEXA-488 fluorescence increased rapidly, consistent with it reporting the initial inward movement of S4, as previously described. In contrast, MTS-TAMRA fluorescence increased more slowly and its early phase correlated with that of channel opening. Additionally, a slow fluorescence component that tracked the development of the mode shift, or channel hysteresis, could be resolved with both labels. We quantitated this component as an increased deactivation tail current delay with concomitantly longer activation periods and found it to depend strongly on the presence of K+ ions in the pore. Using collisional quenching experiments and structural predictions, we established that ALEXA-488 was more exposed to solvent than MTS-TAMRA. We propose that components of S4 movement during channel activation can be kinetically resolved using different fluorescent probes to reveal distinct biophysical properties. Our findings underscore the need to apply caution when interpreting voltage clamp fluorometry data and demonstrate the potential utility of different labels to interrogate distinct biophysical properties of voltage-gated membrane proteins.
Collapse
Affiliation(s)
- Magdalena N. Wojciechowski
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Institut für Pharmazeutische und Medizinische Chemie, Pharmacampus, Universität Münster, Münster, Germany
| | | | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Alibek Kuanyshbek
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ming S. Soh
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Ian C. Forster
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
2
|
Sattler C, Benndorf K. Enlightening activation gating in P2X receptors. Purinergic Signal 2022; 18:177-191. [PMID: 35188598 PMCID: PMC9123132 DOI: 10.1007/s11302-022-09850-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
P2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation. Thus, they are a challenging pharmacological target. The determination of crystal and cryo-EM structures of several isoforms in the last decade in closed, open, and desensitized states has provided a firm basis for interpreting the huge amount of functional and biochemical data. Electrophysiological characterization in conjugation with optical approaches has generated significant insights into structure–function relationships of P2X receptors. This review focuses on novel optical and related approaches to better understand the conformational changes underlying the activation of these receptors.
Collapse
Affiliation(s)
- Christian Sattler
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| | - Klaus Benndorf
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| |
Collapse
|
3
|
Mansoor SE. How Structural Biology Has Directly Impacted Our Understanding of P2X Receptor Function and Gating. Methods Mol Biol 2022; 2510:1-29. [PMID: 35776317 DOI: 10.1007/978-1-0716-2384-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P2X receptors are ATP-gated ion channels expressed in a wide variety of eukaryotic cells. They play key roles in diverse processes such as platelet activation, smooth muscle contraction, synaptic transmission, nociception, cell proliferation, and inflammation making this receptor family an important pharmacological target. Structures of P2X receptors solved by X-ray crystallography have been instrumental in helping to define mechanisms of molecular P2X receptor function. In 2009, the first X-ray structure of the P2X4 receptor subtype confirmed a trimeric stoichiometry and revealed the overall architecture of the functional ion channel. Subsequent X-ray structures have provided the molecular details to define the orthosteric ATP binding pocket, the orthosteric antagonist binding pocket, an allosteric antagonist binding pocket, and the pore architecture in each of the major conformational states of the receptor gating cycle. Moreover, the unique gating mechanism by which P2X receptor subtypes desensitize at differing rates, referred to as the helical recoil model of receptor desensitization, was discovered directly from X-ray structures of the P2X3 receptor. However, structures of P2X receptors solved by X-ray crystallography have only been able to provide limited information on the cytoplasmic domain of this receptor family, as this domain was always truncated to varying degrees in order to facilitate crystallization. Because the P2X7 receptor subtype has a significantly larger cytoplasmic domain that has been shown to be necessary for its ability to initiate apoptosis, an absence of structural information on the P2X7 receptor cytoplasmic domain has limited our understanding of its complex signaling pathways as well as its unusual ability to remain open without undergoing desensitization. This absence of cytoplasmic structural information for P2X7 receptors was recently overcome when the first full-length P2X7 receptor structures were solved by single-particle cryogenic electron microscopy. These structures finally provide insight into the large and unique P2X7 receptor cytoplasmic domain and revealed two novel structural elements and several surprising findings: first, a cytoplasmic structural element called the cytoplasmic ballast was identified that contains a dinuclear zinc ion complex and a high affinity guanosine nucleotide binding site and second, a palmitoylated membrane proximal structural element called the C-cys anchor was identified which prevents P2X7 receptor desensitization. This chapter will highlight the major structural and functional aspects of P2X receptors discovered through structural biology, with a key emphasis on the most recent cryogenic electron microscopy structures of the full-length, wild-type P2X7 receptor.
Collapse
Affiliation(s)
- Steven E Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Stavrou A, Evans RJ, Schmid R. Identification of a distinct desensitisation gate in the ATP-gated P2X2 receptor. Biochem Biophys Res Commun 2020; 523:190-195. [PMID: 31843194 PMCID: PMC7008354 DOI: 10.1016/j.bbrc.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022]
Abstract
P2X receptors are trimeric ATP-gated ion channels. In response to ATP binding, conformational changes lead to opening of the channel and ion flow. Current flow can decline during continued ATP binding in a process called desensitisation. The rate and extent of desensitisation is affected by multiple factors, for instance the T18A mutation in P2X2 makes the ion channel fast desensitising. We have used this mutation to investigate whether the gate restricting ion flow is different in the desensitised and the closed state, by combining molecular modelling and cysteine modification using MTSET (2-(Trimethylammonium)ethyl methanethiosulfonate). Homology modelling of the P2X2 receptor and negative space imaging of the channel suggested a movement of the restriction gate with residue T335 being solvent accessible in the desensitised, but not the closed state. This was confirmed experimentally by probing the accessibility of T335C in the P2X2 T18A/T335C (fast desensitisation) and T335C (slow desensitisation) mutants with MTSET which demonstrates that the barrier to ion flow is different in the closed and the desensitised states. To investigate the T18A induced switch in desensitisation we compared molecular dynamics simulations of the wild type and T18A P2X2 receptor which suggest that the differences in time course of desensitisation are due to structural destabilization of a hydrogen bond network of conserved residues in the proximity of T18.
Collapse
Affiliation(s)
- Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
5
|
Fryatt AG, Dayl S, Stavrou A, Schmid R, Evans RJ. Organization of ATP-gated P2X1 receptor intracellular termini in apo and desensitized states. J Gen Physiol 2019; 151:146-155. [PMID: 30626615 PMCID: PMC6363416 DOI: 10.1085/jgp.201812108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human P2X1 receptor (hP2X1R) is a trimeric ligand-gated ion channel opened by extracellular ATP. The intracellular amino and carboxyl termini play significant roles in determining the time-course and regulation of channel gating-for example, the C terminus regulates recovery from the desensitized state following agonist washout. This suggests that the intracellular regions of the channel have distinct structural features. Studies on the hP2X3R have shown that the intracellular regions associate to form a cytoplasmic cap in the open state of the channel. However, intracellular features could not be resolved in the agonist-free apo and ATP-bound desensitized structures. Here we investigate the organization of the intracellular regions of hP2X1R in the apo and ATP-bound desensitized states following expression in HEK293 cells. We couple cysteine scanning mutagenesis of residues R25-G30 and H355-R360 with the use of bi-functional cysteine reactive cross-linking compounds of different lengths (MTS-2-MTS, BMB, and BM(PEG)2), which we use as molecular calipers. If two cysteine residues come into close proximity, we predict they will be cross-linked and result in ∼66% of the receptor subunits running on a Western blot as dimers. In the control construct (C349A) that removed the free cysteine C349, and some cysteine-containing mutants, cross-linker treatment does not result in dimerization. However, we detect efficient dimerization for R25C, G30C, P358C, K359C, and R360C. This selective pattern indicates that there is structural organization to these regions in the apo and desensitized states in a native membrane environment. The existence of such precap (apo) and postcap (desensitized) organization of the intracellular domains would facilitate efficient gating of the channel.
Collapse
Affiliation(s)
- Alistair G Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sudad Dayl
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Huo H, Fryatt AG, Farmer LK, Schmid R, Evans RJ. Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region. J Biol Chem 2018; 293:12820-12831. [PMID: 29997254 PMCID: PMC6102130 DOI: 10.1074/jbc.ra118.003737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.
Collapse
Affiliation(s)
- Hong Huo
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Alistair G Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Louise K Farmer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
7
|
Wang J, Sun LF, Cui WW, Zhao WS, Ma XF, Li B, Liu Y, Yang Y, Hu YM, Huang LD, Cheng XY, Li L, Lu XY, Tian Y, Yu Y. Intersubunit physical couplings fostered by the left flipper domain facilitate channel opening of P2X4 receptors. J Biol Chem 2017; 292:7619-7635. [PMID: 28302727 DOI: 10.1074/jbc.m116.771121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.
Collapse
Affiliation(s)
- Jin Wang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang-Fei Sun
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wen Cui
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Shan Zhao
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue-Fei Ma
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Bin Li
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yan Liu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - You-Min Hu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Yang Cheng
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- the Department of Anesthesiology and Perioperative Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiang-Yang Lu
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yun Tian
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Ye Yu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, .,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| |
Collapse
|
8
|
Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E. X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 2016; 538:66-71. [PMID: 27626375 DOI: 10.1038/nature19367] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.
Collapse
Affiliation(s)
- Steven E Mansoor
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA.,Knight Cardiovascular Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Wei Lü
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Wout Oosterheert
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Mrinal Shekhar
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA.,Howard Hughes Medical Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| |
Collapse
|
9
|
Fryatt AG, Dayl S, Cullis PM, Schmid R, Evans RJ. Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels. Sci Rep 2016; 6:32918. [PMID: 27616669 PMCID: PMC5018734 DOI: 10.1038/srep32918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/12/2016] [Indexed: 01/05/2023] Open
Abstract
Structural studies of P2X receptors show a novel U shaped ATP orientation following binding. We used voltage clamp fluorometry (VCF) and molecular dynamics (MD) simulations to investigate agonist action. For VCF the P2X1 receptor (P2X1R) K190C mutant (adjacent to the agonist binding pocket) was labelled with the fluorophore MTS-TAMRA and changes in fluorescence on agonist treatment provided a real time measure of conformational changes. Studies with heteromeric channels incorporating a key lysine mutation (K68A) in the ATP binding site demonstrate that normally three molecules of ATP activate the receptor. The time-course of VCF responses to ATP, 2'-deoxy ATP, 3'-deoxy ATP, Ap5A and αβmeATP were agonist dependent. Comparing the properties of the deoxy forms of ATP demonstrated the importance of the 2' hydroxyl group on the ribose ring in determining agonist efficacy consistent with MD simulations showing that it forms a hydrogen bond with the γ-phosphate oxygen stabilizing the U-shaped conformation. Comparison of the recovery of fluorescence on agonist washout, with channel activation to a second agonist application for the partial agonists Ap5A and αβmeATP, showed a complex relationship between conformational change and desensitization. These results highlight that different agonists induce distinct conformational changes, kinetics and recovery from desensitization at P2X1Rs.
Collapse
Affiliation(s)
- Alistair G. Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Sudad Dayl
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Paul M. Cullis
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Richard J. Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
10
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
11
|
Allsopp RC, Evans RJ. Contribution of the Juxtatransmembrane Intracellular Regions to the Time Course and Permeation of ATP-gated P2X7 Receptor Ion Channels. J Biol Chem 2015; 290:14556-66. [PMID: 25903136 PMCID: PMC4505523 DOI: 10.1074/jbc.m115.642033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/19/2023] Open
Abstract
P2X7 receptors are ATP-gated ion channels that contribute to inflammation and cell death. They have the novel property of showing marked facilitation to repeated applications of agonist, and the intrinsic channel pore dilates to allow the passage of fluorescent dyes. A 60-s application of ATP to hP2X7 receptors expressed in Xenopus oocytes gave rise to a current that had a biphasic time course with initial and secondary slowly developing components. A second application of ATP evoked a response with a more rapid time to peak. This facilitation was reversed to initial levels following a 10-min agonist-free interval. A chimeric approach showed that replacement of the pre-TM1 amino-terminal region with the corresponding P2X2 receptor section (P2X7–2Nβ) gave responses that quickly reached a steady state and did not show facilitation. Subsequent point mutations of variant residues identified Asn-16 and Ser-23 as important contributors to the time course/facilitation. The P2X7 receptor is unique in having an intracellular carboxyl-terminal cysteine-rich region (Ccys). Deletion of this region removed the secondary slowly developing current, and, when expressed in HEK293 cells, ethidium bromide uptake was only ∼5% that of WT levels, indicating reduced large pore formation. Dye uptake was also reduced for the P2X7–2Nβ chimera. Surprisingly, combination of the chimera and the Ccys deletion (P2X7–2NβdelCcys) restored the current rise time and ethidium uptake to WT levels. These findings suggest that there is a coevolved interaction between the juxtatransmembrane amino and carboxyl termini in the regulation of P2X7 receptor gating.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
12
|
Talwar S, Lynch JW. Investigating ion channel conformational changes using voltage clamp fluorometry. Neuropharmacology 2015; 98:3-12. [PMID: 25839896 DOI: 10.1016/j.neuropharm.2015.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Sahil Talwar
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Coddou C, Yan Z, Stojilkovic SS. Role of domain calcium in purinergic P2X2 receptor channel desensitization. Am J Physiol Cell Physiol 2015; 308:C729-36. [PMID: 25673774 DOI: 10.1152/ajpcell.00399.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
Abstract
Activation of P2X2 receptor channels (P2X2Rs) is characterized by a rapid current growth accompanied by a decay of current during sustained ATP application, a phenomenon known as receptor desensitization. Using rat, mouse, and human receptors, we show here that two processes contribute to receptor desensitization: bath calcium-independent desensitization and calcium-dependent desensitization. Calcium-independent desensitization is minor and comparable during repetitive agonist application in cells expressing the full size of the receptor but is pronounced in cells expressing shorter versions of receptors, indicating a role of the COOH terminus in control of receptor desensitization. Calcium-dependent desensitization is substantial during initial agonist application and progressively increases during repetitive agonist application in bath ATP and calcium concentration-dependent manners. Experiments with substitution of bath Na(+) with N-methyl-d-glucamine (NMDG(+)), a large organic cation, indicate that receptor pore dilation is a calcium-independent process in contrast to receptor desensitization. A decrease in the driving force for calcium by changing the holding potential from -60 to +120 mV further indicates that calcium influx through the channel pores at least partially accounts for receptor desensitization. Experiments with various receptor chimeras also indicate that the transmembrane and/or intracellular domains of P2X2R are required for development of calcium-dependent desensitization and that a decrease in the amplitude of current slows receptor desensitization. Simultaneous calcium and current recording shows development of calcium-dependent desensitization without an increase in global intracellular calcium concentrations. Combined with experiments with clamping intrapipette concentrations of calcium at various levels, these experiments indicate that domain calcium is sufficient to establish calcium-dependent receptor desensitization in experiments with whole-cell recordings.
Collapse
Affiliation(s)
- Claudio Coddou
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Zonghe Yan
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|