1
|
Mistry HD, Klossner R, Scaife PJ, Eisele N, Kurlak LO, Kallol S, Albrecht C, Gennari-Moser C, Briggs LV, Broughton Pipkin F, Mohaupt MG. Alterations of Placental Sodium in Preeclampsia: Trophoblast Responses. Hypertension 2024; 81:1924-1934. [PMID: 38966986 PMCID: PMC11319085 DOI: 10.1161/hypertensionaha.124.23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Evidence suggests that increasing salt intake in pregnancy lowers blood pressure, protecting against preeclampsia. We hypothesized that sodium (Na+) evokes beneficial placental signals that are disrupted in preeclampsia. METHODS Blood and urine were collected from nonpregnant women of reproductive age (n=26) and pregnant women with (n=50) and without (n=55) preeclampsia, along with placental biopsies. Human trophoblast cell lines and primary human trophoblasts were cultured with varying Na+ concentrations. RESULTS Women with preeclampsia had reduced placental and urinary Na+ concentrations, yet increased urinary angiotensinogen and reduced active renin, aldosterone concentrations, and osmotic response signal TonEBP (tonicity-responsive enhancer binding protein) expression. In trophoblast cell cultures, TonEBP was consistently increased upon augmented Na+ exposure. Mechanistically, inhibiting Na+/K+-ATPase or adding mannitol evoked the TonEBP response, whereas inhibition of cytoskeletal signaling abolished it. CONCLUSIONS Enhanced Na+ availability induced osmotic gradient-dependent cytoskeletal signals in trophoblasts, resulting in proangiogenic responses. As placental salt availability is compromised in preeclampsia, adverse systemic responses are thus conceivable.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Health Sciences, King’s College London, United Kingdom (H.D.M.)
| | - Rahel Klossner
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology (P.J.S.), University of Nottingham, United Kingdom
| | - Nicole Eisele
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Lesia O. Kurlak
- Stroke Trials Unit (School of Medicine) (L.O.K.), University of Nottingham, United Kingdom
| | - Sampada Kallol
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Christiane Albrecht
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Louise V. Briggs
- Advanced Material Research Group, Faculty of Engineering (L.V.B.), University of Nottingham, United Kingdom
| | | | - Markus G. Mohaupt
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| |
Collapse
|
2
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Broeders M, van Rooij J, Oussoren E, van Gestel T, Smith C, Kimber S, Verdijk R, Wagenmakers M, van den Hout J, van der Ploeg A, Narcisi R, Pijnappel W. Modeling cartilage pathology in mucopolysaccharidosis VI using iPSCs reveals early dysregulation of chondrogenic and metabolic gene expression. Front Bioeng Biotechnol 2022; 10:949063. [PMID: 36561048 PMCID: PMC9763729 DOI: 10.3389/fbioe.2022.949063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is a metabolic disorder caused by disease-associated variants in the Arylsulfatase B (ARSB) gene, resulting in ARSB enzyme deficiency, lysosomal glycosaminoglycan accumulation, and cartilage and bone pathology. The molecular response to MPS VI that results in cartilage pathology in human patients is largely unknown. Here, we generated a disease model to study the early stages of cartilage pathology in MPS VI. We generated iPSCs from four patients and isogenic controls by inserting the ARSB cDNA in the AAVS1 safe harbor locus using CRISPR/Cas9. Using an optimized chondrogenic differentiation protocol, we found Periodic acid-Schiff positive inclusions in hiPSC-derived chondrogenic cells with MPS VI. Genome-wide mRNA expression analysis showed that hiPSC-derived chondrogenic cells with MPS VI downregulated expression of genes involved in TGF-β/BMP signalling, and upregulated expression of inhibitors of the Wnt/β-catenin signalling pathway. Expression of genes involved in apoptosis and growth was upregulated, while expression of genes involved in glycosaminoglycan metabolism was dysregulated in hiPSC-derived chondrogenic cells with MPS VI. These results suggest that human ARSB deficiency in MPS VI causes changes in the transcriptional program underlying the early stages of chondrogenic differentiation and metabolism.
Collapse
Affiliation(s)
- M. Broeders
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jgj van Rooij
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - E. Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tjm van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ca Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sj Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rm Verdijk
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maem Wagenmakers
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Jmp van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - At van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - R. Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wwmp Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Kondo R, Deguchi A, Kawata N, Suzuki Y, Yamamura H. Involvement of TREK1 channels in the proliferation of human hepatic stellate LX-2 cells. J Pharmacol Sci 2022; 148:286-294. [DOI: 10.1016/j.jphs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
|
5
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
6
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
7
|
Deng Z, Chen X, Lin Z, Alahdal M, Wang D, Liu J, Li W. The Homeostasis of Cartilage Matrix Remodeling and the Regulation of Volume-Sensitive Ion Channel. Aging Dis 2022; 13:787-800. [PMID: 35656105 PMCID: PMC9116913 DOI: 10.14336/ad.2021.1122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative joint diseases of the hips and knees are common and are accompanied by severe pain and movement disorders. At the microscopic level, the main characteristics of osteoarthritis are the continuous destruction and degeneration of cartilage, increased cartilage extracellular matrix catabolism, decreased anabolism, increased synovial fluid, and decreased osmotic pressure. Cell volume stability is mainly regulated by ion channels, many of which are expressed in chondrocytes. These ion channels are closely related to pain regulation, volume regulation, the inflammatory response, cell proliferation, apoptosis, and cell differentiation. In this review, we focus on the important role of volume control-related ion channels in cartilage matrix remodeling and summarize current views. In addition, the potential mechanism of the volume-sensitive anion channel LRRC8A in the early occurrence of osteoarthritis is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianquan Liu
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| | - Wencui Li
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| |
Collapse
|
8
|
Zhang K, Wang L, Liu Z, Geng B, Teng Y, Liu X, Yi Q, Yu D, Chen X, Zhao D, Xia Y. Mechanosensory and mechanotransductive processes mediated by ion channels in articular chondrocytes: Potential therapeutic targets for osteoarthritis. Channels (Austin) 2021; 15:339-359. [PMID: 33775217 PMCID: PMC8018402 DOI: 10.1080/19336950.2021.1903184] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage consists of an extracellular matrix including many proteins as well as embedded chondrocytes. Articular cartilage formation and function are influenced by mechanical forces. Hind limb unloading or simulated microgravity causes articular cartilage loss, suggesting the importance of the healthy mechanical environment in articular cartilage homeostasis and implying a significant role of appropriate mechanical stimulation in articular cartilage degeneration. Mechanosensitive ion channels participate in regulating the metabolism of articular chondrocytes, including matrix protein production and extracellular matrix synthesis. Mechanical stimuli, including fluid shear stress, stretch, compression and cell swelling and decreased mechanical conditions (such as simulated microgravity) can alter the membrane potential and regulate the metabolism of articular chondrocytes via transmembrane ion channel-induced ionic fluxes. This process includes Ca2+ influx and the resulting mobilization of Ca2+ that is due to massive released Ca2+ from stores, intracellular cation efflux and extracellular cation influx. This review brings together published information on mechanosensitive ion channels, such as stretch-activated channels (SACs), voltage-gated Ca2+ channels (VGCCs), large conductance Ca2+-activated K+ channels (BKCa channels), Ca2+-activated K+ channels (SKCa channels), voltage-activated H+ channels (VAHCs), acid sensing ion channels (ASICs), transient receptor potential (TRP) family channels, and piezo1/2 channels. Data based on epithelial sodium channels (ENaCs), purinergic receptors and N-methyl-d-aspartate (NMDA) receptors are also included. These channels mediate mechanoelectrical physiological processes essential for converting physical force signals into biological signals. The primary channel-mediated effects and signaling pathways regulated by these mechanosensitive ion channels can influence the progression of osteoarthritis during the mechanosensory and mechanoadaptive process of articular chondrocytes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Lifu Wang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Zhongcheng Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Bin Geng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yuanjun Teng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xuening Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Qiong Yi
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dechen Yu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xiangyi Chen
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dacheng Zhao
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yayi Xia
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
9
|
Okada Y, Sato-Numata K, Sabirov RZ, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death. Front Cell Dev Biol 2021; 9:702317. [PMID: 34307382 PMCID: PMC8299559 DOI: 10.3389/fcell.2021.702317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
For survival and functions of animal cells, cell volume regulation (CVR) is essential. Major hallmarks of necrotic and apoptotic cell death are persistent cell swelling and shrinkage, and thus they are termed the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. A number of ubiquitously expressed anion and cation channels play essential roles not only in CVR but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels, and several types of TRP cation channels including TRPM2 and TRPM7. In the Part 1, we described the roles of swelling-activated VSOR/VRAC anion channels. Here, the Part 2 focuses on the roles of the acid-sensitive outwardly rectifying (ASOR) anion channel, also called the proton-activated chloride (PAC) anion channel, which is activated by extracellular protons in a manner sharply dependent on ambient temperature. First, we summarize phenotypical properties, the molecular identity, and the three-dimensional structure of ASOR/PAC. Second, we highlight the unique roles of ASOR/PAC in CVR dysfunction and in the induction of or protection from acidotoxic cell death under acidosis and ischemic conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Sato-Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
10
|
Deng Z, Lin Z, Zhong Q, Lu M, Fang H, Liu J, Duan L, Chen L, Wang L, Wang D, Li W. Interleukin 1 beta-induced chloride currents are important in osteoarthritis onset: an in vitro study. Acta Biochim Biophys Sin (Shanghai) 2021; 53:400-409. [PMID: 33677475 PMCID: PMC7996641 DOI: 10.1093/abbs/gmab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Persistent hypotonic and inflammatory conditions in the joint cavity can lead to the loss of cartilage matrix and cell death, which are the important mechanisms of osteoarthritis (OA) onset. Previous studies have confirmed that the existence of a hypotonic environment is a red flag for inflammation, as hypotonic environment induces the opening of the chloride channel of the cell and promotes chloride ion efflux, which prompts the cell volume to increase. Chloride channels play an important role in the regulation of mineralization and chondrocyte death. Here, we reported that OA chondrocytes showed a significant increase of cell death rate and the imbalance of cartilage matrix catabolism. We found that the distribution of skeleton protein F-actin was disordered. In addition, the volume-sensitive chloride current of OA chondrocytes decreased significantly with the increase of the expression levels of inflammation-related proteins caspase-1, caspase-3, and NLRP3. Moreover, interleukin-1β (IL-1β) showed a potential to activate the chloride current of normal chondrocytes. These results indicate that IL-1β-induced chloride channel opening in chondrocytes may be closely related to the occurrence of OA. This chloride channel opening process may therefore be a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Zhiqin Deng
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Zicong Lin
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Qing Zhong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Minqiang Lu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Huankun Fang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Jianquan Liu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
- International School, Jinan University, Guangzhou 510632, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| |
Collapse
|
11
|
Lin J, Wei J, Lv Y, Zhang X, Yi RF, Dai C, Zhang Q, Jia J, Zhang D, Huang Y. H(+)/Cl(‑) exchange transporter 7 promotes lysosomal acidification‑mediated autophagy in mouse cardiomyocytes. Mol Med Rep 2021; 23:222. [PMID: 33495814 PMCID: PMC7845584 DOI: 10.3892/mmr.2021.11861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Autophagy protects cardiomyocytes in various pathological and physiological conditions; however, the molecular mechanisms underlying its influence and the promotion of autophagic clearance are not completely understood. The present study aimed to explore the role of H(+)/Cl(−) exchange transporter 7 (CLC-7) in cardiomyocyte autophagy. In this study, rapamycin was used to induce autophagy in mouse cardiomyocytes, and the changes in CLC-7 were investigated. The expression levels of CLC-7 and autophagy-related proteins, such as microtubule associated protein 1 light chain 3, autophagy related 5 and Beclin 1, were detected using western blotting or immunofluorescence. Autolysosomes were observed and analyzed using transmission electron microscopy and immunofluorescence following CLC-7 silencing with small interfering RNAs. Cellular viability was assessed using Cell Counting Kit-8 and lactate dehydrogenase assays. Lysosomal acidification was measured using an acidification indicator. Increased CLC-7 co-localization with lysosomes was identified during autophagy. CLC-7 knockdown weakened the acidification of lysosomes, which are the terminal compartments of autophagy flux, and consequently impaired autophagy flux, ultimately resulting in cell injury. Collectively, the present study demonstrated that in cardiomyocytes, CLC-7 may contribute to autophagy via regulation of lysosomal acidification. These findings provide novel insights into the role of CLC-7 in autophagy and cytoprotection.
Collapse
Affiliation(s)
- Jiezhi Lin
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jinyu Wei
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xingyue Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ruo Fan Yi
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chen Dai
- Orthopedics and Trauma Department, The 963rd (224th) Hospital of People's Liberation Army, 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
12
|
Swelling-activated ClC-3 activity regulates prostaglandin E 2 release in human OUMS-27 chondrocytes. Biochem Biophys Res Commun 2020; 537:29-35. [PMID: 33383561 DOI: 10.1016/j.bbrc.2020.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.
Collapse
|
13
|
Kittl M, Winklmayr M, Helm K, Lettner J, Gaisberger M, Ritter M, Jakab M. Acid- and Volume-Sensitive Chloride Currents in Human Chondrocytes. Front Cell Dev Biol 2020; 8:583131. [PMID: 33282866 PMCID: PMC7691427 DOI: 10.3389/fcell.2020.583131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Chondrocytes face extreme alterations of extracellular osmolarity and pH, which force them to appropriately regulate their cell volume (CV) and cellular pH. Perturbations of these mechanisms lead to chondrocyte death and ultimately to osteoarthritis (OA), the most common chronic joint diseases worldwide. OA hallmarks are altered cartilage hydration and severe fluid acidification. Impaired CV regulation and acidotoxicity contribute to disease progression and volume-sensitive anion channels are upregulated in OA. This study assessed the effect of hypotonicity and extracellular acidification on chondrocyte Cl– conductances and CV regulation. Cl– currents and membrane potentials were measured in human C28/I2 cells and primary human chondrocytes using the patch clamp technique. Intracellular pH was assessed by BCECF fluorescence, CV measurements were performed using the Coulter method, and cell viability/cell death by a resazurin assay. Hypotonic cell swelling caused activation of a volume-sensitive outwardly rectifying (VSOR) Cl– current followed by a regulatory volume decrease (RVD), which was attenuated by the Cl– channel blocker DCPIB. Extracellular, but not intracellular acidification to pH ≤ 5.0 elicited an acid-sensitive outwardly rectifying (ASOR) Cl– conductance. Activation of either current depolarized the cell membrane potential. Under simultaneous hypotonic and acidic stimulation, VSOR and ASOR currents transiently coactivated, giving rise to a mixed current phenotype. Over time the VSOR current gradually vanished and the residual conductance showed a pure ASOR current phenotype. Extracellular acidification caused an isotonic CV gain and a complete suppression of RVD under hypotonic conditions. The results suggest that deactivation of the VSOR current under acidic conditions impairs CV regulation in chondrocytes, which is likely to compromise chondrocyte viability.
Collapse
Affiliation(s)
- Michael Kittl
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martina Winklmayr
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Helm
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Lettner
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
14
|
K + and Ca 2+ Channels Regulate Ca 2+ Signaling in Chondrocytes: An Illustrated Review. Cells 2020; 9:cells9071577. [PMID: 32610485 PMCID: PMC7408816 DOI: 10.3390/cells9071577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Collapse
|
15
|
Yarotskyy V, Malysz J, Petkov GV. Extracellular pH and intracellular phosphatidylinositol 4,5-bisphosphate control Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 317:C1268-C1277. [PMID: 31577513 DOI: 10.1152/ajpcell.00189.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl- channels serve as key regulators of excitability and contractility in vascular, intestinal, and airway smooth muscle cells. We recently reported a Cl- conductance in detrusor smooth muscle (DSM) cells. Here, we used the whole cell patch-clamp technique to further characterize biophysical properties and physiological regulators of the Cl- current in freshly isolated guinea pig DSM cells. The Cl- current demonstrated outward rectification arising from voltage-dependent gating of Cl- channels rather than the Cl- transmembrane gradient. An exposure of DSM cells to hypotonic extracellular solution (Δ 165 mOsm challenge) did not increase the Cl- current providing strong evidence that volume-regulated anion channels do not contribute to the Cl- current in DSM cells. The Cl- current was monotonically dependent on extracellular pH, larger and lower in magnitude at acidic (5.0) and basic pH (8.5) values, respectively. Additionally, intracellularly applied phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] analog [PI(4,5)P2-diC8] increased the average Cl- current density by approximately threefold in a voltage-independent manner. The magnitude of the DSM whole cell Cl- current did not depend on the cell surface area (cell capacitance) regardless of the presence or absence of PI(4,5)P2-diC8, an intriguing finding that underscores the complex nature of Cl- channel expression and function in DSM cells. Removal of both extracellular Ca2+ and Mg2+ did not affect the DSM whole cell Cl- current, whereas Gd3+ (1 mM) potentiated the current. Collectively, our recent and present findings strongly suggest that Cl- channels are critical regulators of DSM excitability and are regulated by extracellular pH, Gd3+, and PI(4,5)P2.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
16
|
Acid- and Volume-Sensitive Chloride Currents in Microglial Cells. Int J Mol Sci 2019; 20:ijms20143475. [PMID: 31311135 PMCID: PMC6678294 DOI: 10.3390/ijms20143475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
Many cell types express an acid-sensitive outwardly rectifying (ASOR) anion current of an unknown function. We characterized such a current in BV-2 microglial cells and then studied its interrelation with the volume-sensitive outwardly rectifying (VSOR) Cl− current and the effect of acidosis on cell volume regulation. We used patch clamp, the Coulter method, and the pH-sensitive dye BCECF to measure Cl− currents and cell membrane potentials, mean cell volume, and intracellular pH, respectively. The ASOR current activated at pH ≤ 5.0 and displayed an I− > Cl− > gluconate− permeability sequence. When compared to the VSOR current, it was similarly sensitive to DIDS, but less sensitive to DCPIB, and insensitive to tamoxifen. Under acidic conditions, the ASOR current was the dominating Cl− conductance, while the VSOR current was apparently inactivated. Acidification caused cell swelling under isotonic conditions and prevented the regulatory volume decrease under hypotonicity. We conclude that acidification, associated with activation of the ASOR- and inactivation of the VSOR current, massively impairs cell volume homeostasis. ASOR current activation could affect microglial function under acidotoxic conditions, since acidosis is a hallmark of pathophysiological events like inflammation, stroke or ischemia and migration and phagocytosis in microglial cells are closely related to cell volume regulation.
Collapse
|
17
|
Yarotskyy V, Malysz J, Petkov GV. Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C698-C710. [PMID: 30566392 DOI: 10.1152/ajpcell.00327.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple types of Cl- channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl- channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl- channels in freshly isolated guinea pig DSM cells. The recorded single Cl- channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the ECl of -65 mV, confirming preferential permeability to Cl-. The Cl- channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V0.5, ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca2+-free or 1 mM Ca2+. In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl- with I-, Br-, or methanesulfonate (MsO-), resulting in anionic permeability sequence: Cl->Br->I->MsO-. While intracellular Ca2+ levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl- current and outward rectification, high Ca2+ slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca2+-independent DIDS and niflumic acid-sensitive, voltage-dependent Cl- channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
18
|
Silawal S, Willauschus M, Schulze-Tanzil G, Gögele C, Geßlein M, Schwarz S. IL-10 Could Play a Role in the Interrelation between Diabetes Mellitus and Osteoarthritis. Int J Mol Sci 2019; 20:ijms20030768. [PMID: 30759730 PMCID: PMC6387262 DOI: 10.3390/ijms20030768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/19/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
The association between osteoarthritis (OA), obesity and metabolic syndrome suggests an interrelation between OA and diabetes mellitus (DM). Little is known about the role of anti-inflammatory cytokine interleukin (IL)-10 in the interrelation between OA and DM. Hence, the effects of IL-10 under hyperglycemia (HG) and hyperinsulinemia (HI) in human articular chondrocytes (hAC) and chondrosarcoma cell line Okayama University Medical School (OUMS)-27 were examined. HAC and OUMS-27, cultured in normoglycemic (NG) and HG conditions were stimulated with insulin and/or IL-10. Cell survival, metabolic activity, proliferation and extracellular matrix (ECM) synthesis were immunocytochemically examined. No significant differences in vitality of hAC neither in pure NG (NGw/o) nor HG (HGw/o) conditions were found. Applying HI and/or IL-10 in both conditions reduced significantly the vitality of hAC but not of OUMS-27. HG impaired significantly hAC metabolism. When combined with HI + IL-10 or IL-10 alone it decreased also significantly hAC proliferation compared to NGw/o. In OUMS-27 it induced only a trend of impaired proliferation compared to NGw/o. hAC but not OUMS-27 reduced significantly their collagen type (col) I, SOX9 and proteoglycan (PG) synthesis in HG combined with HI +/− IL-10 compared to NGw/o. IL-10 could not moderate HI and HG effects. In contrast to hAC OUMS-27 showed limited sensitivity as DM model.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Maximilian Willauschus
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Clemens Gögele
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | - Markus Geßlein
- Department of Orthopedics and Trauma Surgery, Nuremberg General Hospital, Paracelsus Medical University, Nueremberg. Breslauer Strasse 201, 90471 Nuremberg, Germany.
| | - Silke Schwarz
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
19
|
Asmar A, Semenov I, Kelly R, Stacey M. Abnormal response of costal chondrocytes to acidosis in patients with chest wall deformity. Exp Mol Pathol 2018; 106:27-33. [PMID: 30485799 DOI: 10.1016/j.yexmp.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
Abstract
Costal cartilage is much understudied compared to the load bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken or pigeon chest respectively. A lack of understanding of the ultrastructural and molecular biology properties of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. Due to the avascular nature of cartilage, chondrocytes metabolize glycolytically, producing an acidic environment. During physical activity hydrogen ions move within cartilage driven by compressive forces, thus at any one time, chondrocytes experience transient changes in pH. A variety of ion channels on chondrocytes plasma membrane equip them to function in the rapidly changing conditions they experience. In this paper we describe reduced expression of the ASIC2 gene encoding the acid sensing ion channel isoform 2 (previously referred to as ACCN1 or ACCN) in patients with chest wall deformities. We hypothesized that chondrocytes from these patients cannot respond normally to changes in pH that are an integral part of the biology of this tissue. Activation of ASICs indirectly creates a cascade ultimately dependent on intracellular calcium transients. The objective of this paper was to compare internal calcium signaling in response to external pH changes in costal chondrocytes from patients with chest wall deformities and healthy individuals. Although the molecular mechanism through which chondrocytes are regulated by acidosis remains unknown, we observed reduced amplitudes of calcium rise in patient chondrocytes exposed to low pH that become further impaired upon repeat exposure.
Collapse
Affiliation(s)
- A Asmar
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - I Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - R Kelly
- Department of Surgery, Eastern Virginia Medical School, Pediatric Surgery Division, Children's Hospital of the King's Daughters, Norfolk, VA, USA
| | - M Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
20
|
Yamamura H, Suzuki Y, Imaizumi Y. Physiological and Pathological Functions of Cl - Channels in Chondrocytes. Biol Pharm Bull 2018; 41:1145-1151. [PMID: 30068862 DOI: 10.1248/bpb.b18-00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Articular chondrocytes are embedded in the cartilage of diarthrodial joints and responsible for the synthesis and secretion of extracellular matrix. The extracellular matrix mainly contains collagens and proteoglycans, and covers the articular cartilage to protect from mechanical and biochemical stresses. In mammalian chondrocytes, various types of ion channels have been identified: e.g., voltage-dependent K+ channels, Ca2+-activated K+ channels, ATP-sensitive K+ channels, two-pore domain K+ channels, voltage-dependent Ca2+ channels, store-operated Ca2+ channels, epithelial Na+ channels, acid-sensing ion channels, transient receptor potential channels, and mechanosensitive channels. These channels play important roles for the regulation of resting membrane potential, Ca2+ signaling, pH sensing, mechanotransduction, and cell proliferation in articular chondrocytes. In addition to these cation channels, Cl- channels are known to be expressed in mammalian chondrocytes: e.g., voltage-dependent Cl- channels, cystic fibrosis transmembrane conductance regulator channels, swelling-activated Cl- channels, and Ca2+-activated Cl- channels. Although these chondrocyte Cl- channels are thought to contribute to the regulation of resting membrane potential, Ca2+ signaling, cell volume, cell survival, and endochondral bone formation, the physiological functions have not been fully clarified. Osteoarthritis (OA) is caused by the degradation of articular cartilage, resulting in inflammation and pain in the joints. Therefore the pathophysiological roles of Cl- channels in OA chondrocytes are of considerable interest. Elucidating the physiological and pathological functions of chondrocyte Cl- channels will provide us a more comprehensive understanding of chondrocyte functions and may suggest novel molecular targets of drug development for OA.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
21
|
Ikeuchi Y, Kogiso H, Hosogi S, Tanaka S, Shimamoto C, Matsumura H, Inui T, Marunaka Y, Nakahari T. Carbocisteine stimulated an increase in ciliary bend angle via a decrease in [Cl -] i in mouse airway cilia. Pflugers Arch 2018; 471:365-380. [PMID: 30291431 DOI: 10.1007/s00424-018-2212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Carbocisteine (CCis), a mucoactive agent, is widely used to improve respiratory diseases. This study demonstrated that CCis increases ciliary bend angle (CBA) by 30% and ciliary beat frequency (CBF) by 10% in mouse airway ciliary cells. These increases were induced by an elevation in intracellular pH (pHi; the pHi pathway) and a decrease in the intracellular Cl- concentration ([Cl-]i; the Cl- pathway) stimulated by CCis. The Cl- pathway, which is independent of CO2/HCO3-, increased CBA by 20%. This pathway activated Cl- release via activation of Cl- channels, leading to a decrease in [Cl-]i, and was inhibited by Cl- channel blockers (5-nitro-2-(3-phenylpropylamino) benzoic acid and CFTR(inh)-172). Under the CO2/HCO3--free condition, the CBA increase stimulated by CCis was mimicked by the Cl--free NO3- solution. The pHi pathway, which depends on CO2/HCO3-, increased CBF and CBA by 10%. This pathway activated HCO3- entry via Na+/HCO3- cotransport (NBC), leading to a pHi elevation, and was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. The effects of CCis were not affected by a protein kinase A inhibitor (1 μM PKI-A) or Ca2+-free solution. Thus, CCis decreased [Cl-]i via activation of Cl- channels including CFTR, increasing CBA by 20%, and elevated pHi via NBC activation, increasing CBF and CBA by 10%.
Collapse
Affiliation(s)
- Yukiko Ikeuchi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Haruka Kogiso
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekuni Hosogi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Chikao Shimamoto
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Hitoshi Matsumura
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Toshio Inui
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
22
|
Maleckar MM, Clark RB, Votta B, Giles WR. The Resting Potential and K + Currents in Primary Human Articular Chondrocytes. Front Physiol 2018; 9:974. [PMID: 30233381 PMCID: PMC6131720 DOI: 10.3389/fphys.2018.00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
Human transplant programs provide significant opportunities for detailed in vitro assessments of physiological properties of selected tissues and cell types. We present a semi-quantitative study of the fundamental electrophysiological/biophysical characteristics of human chondrocytes, focused on K+ transport mechanisms, and their ability to regulate to the resting membrane potential, Em. Patch clamp studies on these enzymatically isolated human chondrocytes reveal consistent expression of at least three functionally distinct K+ currents, as well as transient receptor potential (TRP) currents. The small size of these cells and their exceptionally low current densities present significant technical challenges for electrophysiological recordings. These limitations have been addressed by parallel development of a mathematical model of these K+ and TRP channel ion transfer mechanisms in an attempt to reveal their contributions to Em. In combination, these experimental results and simulations yield new insights into: (i) the ionic basis for Em and its expected range of values; (ii) modulation of Em by the unique articular joint extracellular milieu; (iii) some aspects of TRP channel mediated depolarization-secretion coupling; (iv) some of the essential biophysical principles that regulate K+ channel function in “chondrons.” The chondron denotes the chondrocyte and its immediate extracellular compartment. The presence of discrete localized surface charges and associated zeta potentials at the chondrocyte surface are regulated by cell metabolism and can modulate interactions of chondrocytes with the extracellular matrix. Semi-quantitative analysis of these factors in chondrocyte/chondron function may yield insights into progressive osteoarthritis.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Biomedical Computing and Center for Cardiological Innovation, Oslo, Norway.,Allen Institute for Cell Science, Seattle, WA, United States
| | - Robert B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Mobasheri A, Matta C, Uzielienè I, Budd E, Martín-Vasallo P, Bernotiene E. The chondrocyte channelome: A narrative review. Joint Bone Spine 2018; 86:29-35. [PMID: 29452304 DOI: 10.1016/j.jbspin.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
Chondrocytes are the main cells in the extracellular matrix (ECM) of articular cartilage and possess a highly differentiated phenotype that is the hallmark of the unique physiological functions of this specialised load-bearing connective tissue. The plasma membrane of articular chondrocytes contains a rich and diverse complement of membrane proteins, known as the membranome, which defines the cell surface phenotype of the cells. The membranome is a key target of pharmacological agents and is important for chondrocyte function. It includes channels, transporters, enzymes, receptors, and anchors for intracellular, cytoskeletal and ECM proteins and other macromolecular complexes. The chondrocyte channelome is a sub-compartment of the membranome and includes a complete set of ion channels and porins expressed in these cells. Many of these are multi-functional proteins with "moonlighting" roles, serving as channels, receptors and signalling components of larger molecular assemblies. The aim of this review is to summarise our current knowledge of the fundamental aspects of the chondrocyte channelome, discuss its relevance to cartilage biology and highlight its possible role in the pathogenesis of osteoarthritis (OA). Excessive and inappropriate mechanical loads, an inflammatory micro-environment, alternative splicing of channel components or accumulation of basic calcium phosphate crystals can result in an altered chondrocyte channelome impairing its function. Alterations in Ca2+ signalling may lead to defective synthesis of ECM macromolecules and aggravated catabolic responses in chondrocytes, which is an important and relatively unexplored aspect of the complex and poorly understood mechanism of OA development.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, United Kingdom; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilona Uzielienè
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Emma Budd
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Pablo Martín-Vasallo
- Department of Biochemistry and Molecular Biology, University of La Laguna, Tenerife, Spain
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
24
|
Suzuki Y, Ohya S, Yamamura H, Giles WR, Imaizumi Y. A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel α Subunit Alters Human Chondrocyte Function. J Biol Chem 2016; 291:24247-24260. [PMID: 27758860 DOI: 10.1074/jbc.m116.743302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Large conductance Ca2+-activated K+ (BK) channels play essential roles in both excitable and non-excitable cells. For example, in chondrocytes, agonist-induced Ca2+ release from intracellular store activates BK channels, and this hyperpolarizes these cells, augments Ca2+ entry, and forms a positive feed-back mechanism for Ca2+ signaling and stimulation-secretion coupling. In the present study, functional roles of a newly identified splice variant in the BK channel α subunit (BKαΔe2) were examined in a human chondrocyte cell line, OUMS-27, and in a HEK293 expression system. Although BKαΔe2 lacks exon2, which codes the intracellular S0-S1 linker (Glu-127-Leu-180), significant expression was detected in several tissues from humans and mice. Molecular image analyses revealed that BKαΔe2 channels are not expressed on plasma membrane but can traffic to the plasma membrane after forming hetero-tetramer units with wild-type BKα (BKαWT). Single-channel current analyses demonstrated that BKα hetero-tetramers containing one, two, or three BKαΔe2 subunits are functional. These hetero-tetramers have a smaller single channel conductance and exhibit lower trafficking efficiency than BKαWT homo-tetramers in a stoichiometry-dependent manner. Site-directed mutagenesis of residues in exon2 identified Helix2 and the linker to S1 (Trp-158-Leu-180, particularly Arg-178) as an essential segment for channel function including voltage dependence and trafficking. BKαΔe2 knockdown in OUMS-27 chondrocytes increased BK current density and augmented the responsiveness to histamine assayed as cyclooxygenase-2 gene expression. These findings provide significant new evidence that BKαΔe2 can modulate cellular responses to physiological stimuli in human chondrocyte and contribute under pathophysiological conditions, such as osteoarthritis.
Collapse
Affiliation(s)
- Yoshiaki Suzuki
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | - Susumu Ohya
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan.,the Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan, and
| | - Hisao Yamamura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | - Wayne R Giles
- the Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Imaizumi
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan,
| |
Collapse
|
25
|
Kumagai K, Toyoda F, Staunton C, Maeda T, Okumura N, Matsuura H, Matsusue Y, Imai S, Barrett-Jolley R. Activation of a chondrocyte volume-sensitive Cl(-) conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarthritis Cartilage 2016; 24:1786-1794. [PMID: 27266646 PMCID: PMC5756537 DOI: 10.1016/j.joca.2016.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The anterior cruciate ligament transection (ACLT) rabbit osteoarthritis (OA) model confers permanent knee instability and induces joint degeneration. The degeneration process is complex, but includes chondrocyte apoptosis and OA-like loss of cartilage integrity. Previously, we reported that activation of a volume-sensitive Cl(-) current (ICl,vol) can mediate cell shrinkage and apoptosis in rabbit articular chondrocytes. Our objective was therefore to investigate whether ICl,vol was activated in the early stages of the rabbit ACLT OA model. DESIGN Adult Rabbits underwent unilateral ACLT and contralateral arthrotomy (sham) surgery. Rabbits were euthanized at 2 or 4 weeks. Samples were analyzed histologically and with assays of cell volume, apoptosis and electrophysiological characterization of ICl,vol. RESULTS At 2 and 4 weeks post ACLT cartilage appeared histologically normal, nevertheless cell swelling and caspase 3/7 activity were both significantly increased compared to sham controls. In cell-volume experiments, exposure of chondrocytes to hypotonic solution led to a greater increase in cell size in ACLT compared to controls. Caspase-3/7 activity, an indicator of apoptosis, was elevated in both ACLT 2wk and 4wk. Whole-cell currents were recorded with patch clamp of chondrocytes in iso-osmotic and hypo-osmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. ACLT treatment resulted in a large increase in hypotonic-activated chloride conductance. CONCLUSION Changes in chondrocyte ion channels take place prior to the onset of apparent cartilage loss in the ACLT rabbit model of OA. Further studies are needed to investigate if pharmacological inhibition of ICl,vol decreases progression of OA in animal models.
Collapse
Affiliation(s)
- K. Kumagai
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - F. Toyoda
- Department of Physiology, Shiga University of Medical Science, Japan
| | - C.A. Staunton
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK
| | - T. Maeda
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - N. Okumura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - H. Matsuura
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Y. Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - S. Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - R. Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Address correspondence and reprint requests to: R. Barrett-Jolley, Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK.Department of Musculoskeletal BiologyInstitute of Aging and Chronic DiseaseUniversity of LiverpoolUK
| |
Collapse
|
26
|
Asmar A, Barrett-Jolley R, Werner A, Kelly R, Stacey M. Membrane channel gene expression in human costal and articular chondrocytes. Organogenesis 2016; 12:94-107. [PMID: 27116676 PMCID: PMC4981366 DOI: 10.1080/15476278.2016.1181238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought.
Collapse
Affiliation(s)
- A Asmar
- a Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk , VA , USA
| | - R Barrett-Jolley
- b Department of Musculoskeletal Biology , University of Liverpool , England , UK
| | - A Werner
- c Department of Pathology , Eastern Virginia Medical School and Med Director of Laboratories, Children's Hospital of The King's Daughters , Norfolk , VA , USA
| | - R Kelly
- d Department of Surgery , Eastern Virginia Medical School and Pediatric Surgery Division, Children's Hospital of the King's Daughters , Norfolk , VA , USA
| | - M Stacey
- a Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
27
|
Lewis R, Barrett-Jolley R. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis. Front Physiol 2015; 6:357. [PMID: 26648874 PMCID: PMC4664663 DOI: 10.3389/fphys.2015.00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA.
Collapse
Affiliation(s)
- Rebecca Lewis
- Faculty of Health and Medical Sciences, School of Veterinary Medicine and Science, University of Surrey Guildford, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| |
Collapse
|