1
|
Fathi M, Zarei A, Moghimi A, Jalali P, Salehi Z, Gholamin S, Jadidi-Niaragh F. Combined cancer immunotherapy based on targeting adenosine pathway and PD-1/PDL-1 axis. Expert Opin Ther Targets 2024; 28:757-777. [PMID: 39305018 DOI: 10.1080/14728222.2024.2405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Cancer immunotherapy has revolutionized the field of oncology, offering new hope to patients with advanced malignancies. Tumor-induced immunosuppression limits the effectiveness of current immunotherapeutic strategies, such as PD-1/PDL-1 checkpoint inhibitors. Adenosine, a purine nucleoside molecule, is crucial to this immunosuppression because it stops T cells from activating and helps regulatory T cells grow. Targeting the adenosine pathway and blocking PD-1/PDL-1 is a potential way to boost the immune system's response to tumors. AREAS COVERED This review discusses the current understanding of the adenosine pathway in tumor immunology and the preclinical and clinical data supporting the combination of adenosine pathway inhibitors with PD-1/PDL-1 blockade. We also discuss the challenges and future directions for developing combination immunotherapy targeting the adenosine pathway and the PD-1/PDL-1 axis for cancer treatment. EXPERT OPINION The fact that the adenosine signaling pathway controls many immune system processes suggests that it has a wide range of therapeutic uses. Within the next five years, there will be tremendous progress in this area, and the standard of care for treating malignant tumors will have switched from point-to-point therapy to the integration of immunological networks comprised of multiple signaling pathways, like the adenosine axis.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ata Moghimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Gholamin
- City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA
- City of Hope Department of Radiation Oncology, Duarte, CA, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Saggu S, Chen Y, Chen L, Pizarro D, Pati S, Law WJ, McMahon L, Jiao K, Wang Q. A peptide blocking the ADORA1-neurabin interaction is anticonvulsant and inhibits epilepsy in an Alzheimer's model. JCI Insight 2022; 7:155002. [PMID: 35674133 PMCID: PMC9220929 DOI: 10.1172/jci.insight.155002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epileptic seizures are common sequelae of stroke, acute brain injury, and chronic neurodegenerative diseases, including Alzheimer's disease (AD), and cannot be effectively controlled in approximately 40% of patients, necessitating the development of novel therapeutic agents. Activation of the A1 receptor (A1R) by endogenous adenosine is an intrinsic mechanism to self-terminate seizures and protect neurons from excitotoxicity. However, targeting A1R for neurological disorders has been hindered by side effects associated with its broad expression outside the nervous system. Here we aim to target the neural-specific A1R/neurabin/regulator of G protein signaling 4 (A1R/neurabin/RGS4) complex that dictates A1R signaling strength and response outcome in the brain. We developed a peptide that blocks the A1R-neurabin interaction to enhance A1R activity. Intracerebroventricular or i.n. administration of this peptide shows marked protection against kainate-induced seizures and neuronal death. Furthermore, in an AD mouse model with spontaneous seizures, nasal delivery of this blocking peptide reduces epileptic spike frequency. Significantly, the anticonvulsant and neuroprotective effects of this peptide are achieved through enhanced A1R function in response to endogenous adenosine in the brain, thus, avoiding side effects associated with A1R activation in peripheral tissues and organs. Our study informs potentially new anti-seizure therapy applicable to epilepsy and other neurological illness with comorbid seizures.
Collapse
Affiliation(s)
- Shalini Saggu
- Departments of Cell, Developmental and Integrative Biology
| | - Yunjia Chen
- Departments of Cell, Developmental and Integrative Biology
| | - Liping Chen
- Departments of Cell, Developmental and Integrative Biology
| | | | | | - Wen Jing Law
- Departments of Cell, Developmental and Integrative Biology
| | - Lori McMahon
- Departments of Cell, Developmental and Integrative Biology
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Alabama, USA
| | - Qin Wang
- Departments of Cell, Developmental and Integrative Biology
| |
Collapse
|
3
|
Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH. Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 2019; 25:899-910. [PMID: 31334608 PMCID: PMC6698970 DOI: 10.1111/cns.13190] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
As an endogenous neuroprotectant agent, adenosine is extensively distributed and is particularly abundant in the central nervous system (CNS). Under physiological conditions, the concentration of adenosine is low intra- and extracellularly, but increases significantly in response to stress. The majority of adenosine functions are receptor-mediated, and primarily include the A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). Adenosine is currently widely used in the treatment of diseases of the CNS and the cardiovascular systems, and the mechanisms are related to the disease types, disease locations, and the adenosine receptors distribution in the CNS. For example, the main infarction sites of cerebral ischemia are cortex and striatum, which have high levels of A1 and A2A receptors. Cerebral ischemia is manifested with A1R decrease and A2AR increase, as well as reduction in the A1R-mediated inhibitory processes and enhancement of the A2AR-mediated excitatory process. Adenosine receptor dysfunction is also involved in the pathology of Alzheimer's disease (AD), depression, and epilepsy. Thus, the adenosine receptor balance theory is important for brain disease treatment. The concentration of adenosine can be increased by endogenous or exogenous pathways due to its short half-life and high inactivation properties. Therefore, we will discuss the function of adenosine and its receptors, adenosine formation, and metabolism, and its role for the treatment of CNS diseases (such as cerebral ischemia, AD, depression, Parkinson's disease, epilepsy, and sleep disorders). This article will provide a scientific basis for the development of novel adenosine derivatives through adenosine structure modification, which will lead to experimental applications.
Collapse
Affiliation(s)
- Ying-Jiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Jiao Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Mei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| |
Collapse
|