1
|
Maluangnont T, Praserthdam P, Sooknoi T. Catalytic deoxygenation of fatty acids via ketonization and α-carbon scissions over layered alkali titanate catalysts under N 2. RSC Adv 2022; 12:34293-34302. [PMID: 36545579 PMCID: PMC9709662 DOI: 10.1039/d2ra06530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The ketonization of fatty acid with subsequent McLafferty rearrangement of the fatty ketone allows the deoxygenation to hydrocarbons. Here, we report the cascade reaction of palmitic acid (C16) to hydrocarbons (≤C14) over lepidocrocite-type alkali titanate K0.8Zn0.4Ti1.6O4, K0.8Mg0.4Ti1.6O4, and K0.8Li0.27Ti1.73O4 and the reassembled TiO2 catalysts at ≤400 °C under atmospheric N2 in a continuous fixed-bed flow reactor. The C16 acid is coupled to C31 ketone prior to the scissions mostly to a C17 methyl ketone and C14 hydrocarbons (i.e., the McLafferty rearrangement). The hydrocarbons yield increases with temperature and is proportional to partial charge at the O atom, suggesting that basic sites are responsible for C31 ketone scissions. The layered alkali titanate catalysts with two-dimensional (2D) space inhibit diffusion of the ketone primarily formed and promote its scissions to hydrocarbons within the confined space. Otherwise, low hydrocarbons yield (but high ketone yield) is obtained over TiO2 and the Mg/Al mixed oxide catalysts possessing no interlayer space. Meanwhile, the semi-batch experiment with pre-intercalated palmitic acid favors a direct deoxygenation, demonstrating the essential role of reaction mode toward ketone scission reaction pathway. Over K0.8Li0.27Ti1.73O4, the complete palmitic acid conversion leads to ∼47% hydrocarbons yield, equivalent to ∼80% reduction of the oxygen content in the feed under N2.
Collapse
Affiliation(s)
- Tosapol Maluangnont
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand,Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Chulalongkorn UniversityBangkok 10330Thailand
| | - Tawan Sooknoi
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand,Department of Chemistry, School of Science, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand
| |
Collapse
|
2
|
Lu JY, Zhou X, Yang J, Zhou Y, He B, Huang WT, Wang Y, Guo Z. Migration inhibition and selective cytotoxicity of cobalt hydroxide nanosheets on different cancer cell lines. NEW J CHEM 2022. [DOI: 10.1039/d2nj01466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5 nm-thick cobalt hydroxide nanosheets exhibited concentration-dependent selective antitumor activity and cell migration inhibition against a variety of cancer cells.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Xiaolong Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Jialiang Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
- Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Yi Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yajing Wang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Zhen Guo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
3
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Titania Nanosheet Generates Peroxynitrite-Dependent S-Nitrosylation and Enhances p53 Function in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13081233. [PMID: 34452194 PMCID: PMC8401232 DOI: 10.3390/pharmaceutics13081233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metal nanomaterials can enhance the efficacy of current cancer therapies. Here, we show that Ti0.8O2 nanosheets cause cytotoxicity in several lung cancer cells but not in normal cells. The nanosheet-treated cells showed certain apoptosis characteristics. Protein analysis further indicated the activation of the p53-dependent death mechanism. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses revealed the cellular uptake of the nanosheets and the induction of cell morphological change. The nanosheets also exhibited a substantial apoptosis effect on drug-resistant metastatic primary lung cancer cells, and it was found that the potency of the nanosheets was dramatically higher than standard drugs. Ti0.8O2 nanosheets induce apoptosis through a molecular mechanism involving peroxynitrite (ONOO−) generation. As peroxynitrite is known to be a potent inducer of S-nitrosylation, we further found that the nanosheets mediated the S-nitrosylation of p53 at C182, resulting in higher protein-protein complex stability, and this was likely to induce the surrounding residues, located in the interface region, to bind more strongly to each other. Molecular dynamics analysis revealed that S-nitrosylation stabilized the p53 dimer with a ΔGbindresidue of <−1.5 kcal/mol. These results provide novel insight on the apoptosis induction effect of the nanosheets via a molecular mechanism involving S-nitrosylation of the p53 protein, emphasizing the mechanism of action of nanomaterials for cancer therapy.
Collapse
|
5
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
6
|
Sriphan S, Charoonsuk T, Khaisaat S, Sawanakarn O, Pharino U, Phunpruch S, Maluangnont T, Vittayakorn N. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. NANOTECHNOLOGY 2021; 32:155502. [PMID: 33401254 DOI: 10.1088/1361-6528/abd8ae] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, titanium dioxide nanosheets (Ti0.91O2 NSs) were incorporated into bacterial cellulose (BC) film for dielectric property tuning while maintaining the flexibility of the resulting composite paper. By taking advantage of the improved dielectric constant, the nanosheets/BC composites were employed as capacitive sensors. The fabricated devices showed the highest sensing performance of ∼2.44 × 10-3 kPa-1 from 0 to 30 N when incorporating as little as 3 vol% of Ti0.91O2 NSs (or ∼2 wt% Ti). Stable operation and high robustness of the sensor were demonstrated, where simple human motions could be efficiently monitored. This study provided a route for preparing flexible and low-cost BC composite paper for capacitive sensor. The strategy for enhancing the dielectric properties as well as sensing performances of the BC demonstrated herein will be essential for the future development of biocompatible, low-cost, and eco-friendly wearable electronics.
Collapse
Affiliation(s)
- Saichon Sriphan
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
- Advanced Material Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thitirat Charoonsuk
- Department of Materials Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supharada Khaisaat
- Advanced Material Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Oubonwan Sawanakarn
- Advanced Material Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Utchawadee Pharino
- Advanced Material Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tosapol Maluangnont
- Electroceramics Research Laboratory, College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naratip Vittayakorn
- Advanced Material Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
7
|
Maluangnont T, Sooknoi T. Inclusion of alkali carboxylate salts at the two-dimensional space of layered alkali titanate via carboxylic acids intercalation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wang W, He S, Zhang R, Peng J, Guo D, Zhang J, Xiang B, Li L. ALDH1A1 maintains the cancer stem-like cells properties of esophageal squamous cell carcinoma by activating the AKT signal pathway and interacting with β-catenin. Biomed Pharmacother 2020; 125:109940. [PMID: 32044720 DOI: 10.1016/j.biopha.2020.109940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is a marker of cancer stem-like cells (CSCs), but knowledge about the molecular mechanism of ALDH1A1 in maintaining the properties of CSCs remains limited. ALDH1A1 immunohistochemistry was performed in esophageal squamous cell carcinoma (ESCC) tissues, Western blotting was used to detect relationship between ALDH1A1 and AKT or β-catenin. Subcutaneous transplantation of tumors and drug resistance, spherogenesis experiments were used to test the ESCC cell stemness. Co-IP and confocal were used to detected the co-localization of LADH1A1 and β-catenin. ALDH1A1 expression maintained the CSC properties of ESCC cells. It enhanced the chemo-resistance ability, clonogenicity, and spherogenesis in vitro and tumorigenicity in vivo. High ALDH1A1 expression is an adverse prognostic factor of ESCC patients. Small-molecule inhibitor NCT-501 down-regulates ALDH1A1 expression and inhibits the AKT-β-catenin signaling pathway. ALDH1A1 overexpression activates the AKT signaling pathway. ALDH1A1 interacts with β-catenin, co-localization in KYS-510 cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| | - Shujin He
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jie Peng
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Daolu Guo
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jinguo Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
9
|
Huang T, Zhou X, Mao X, Yu C, Zhang Z, Yang J, Zhang Y, Su T, Chen C, Cao Y, Wei H, Wu Z. Lactate-fueled oxidative metabolism drives DNA methyltransferase 1-mediated transcriptional co-activator with PDZ binding domain protein activation. Cancer Sci 2019; 111:186-199. [PMID: 31746077 PMCID: PMC6942427 DOI: 10.1111/cas.14246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Activity of transcriptional co‐activator with PDZ binding domain (TAZ) protein is strongly implicated in the pathogenesis of human cancer and is influenced by tumor metabolism. High levels of lactate concentration in the tumor microenvironment as a result of metabolic reprogramming are inversely correlated with patient overall survival. Herein, we investigated the role of lactate in the regulation of the activity of TAZ and showed that glycolysis‐derived lactate efficiently increased TAZ expression and activity in lung cancer cells. We showed that the reactive oxygen species (ROS) generated by lactate‐fueled oxidative phosphorylation (OXPHOS) in mitochondria activated AKT and thereby inhibited glycogen synthase kinase 3 beta/beta‐transducin repeat‐containing proteins (GSK‐3β/β‐TrCP)‐mediated ubiquitination and degradation of DNA methyltransferase 1 (DNMT1). Upregulation of DNMT1 by lactate caused hypermethylation of TAZ negative regulator of the LATS2 gene promoter, leading to TAZ activation. Moreover, TAZ binds to the promoter of DNMT1 and is necessary for DNMT1 transcription. Our study showed a molecular mechanism of DNMT1 in linking tumor metabolic reprogramming to the Hippo‐TAZ pathway and functional significance of the DNMT1‐TAZ feedback loop in the migratory and invasive potential of lung cancer cells.
Collapse
Affiliation(s)
- Tao Huang
- School of Clinical Medicine, Wannan Medical College, Wuhu, China.,Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Xinglu Zhou
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Laboratory Medicine, Wannan Medical College, Wuhu, China
| | - Xike Mao
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Chenxi Yu
- School of Clinical Medicine, Wannan Medical College, Wuhu, China.,Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhijian Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Jianke Yang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Tianyu Su
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Chenchen Chen
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yuxiang Cao
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Laboratory Medicine, Wannan Medical College, Wuhu, China
| | - Huijun Wei
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|