1
|
Nishida M, Mi X, Ishii Y, Kato Y, Nishimura A. Cardiac remodeling: novel pathophysiological mechanisms and therapeutic strategies. J Biochem 2024; 176:255-262. [PMID: 38507681 DOI: 10.1093/jb/mvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered as a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and β-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and aetiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulphide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.
Collapse
Key Words
- Abbreviations: CTGF, connective tissue growth factor
- GEF-H1, guanine nucleotide exchange factor
- HFpEF, heart failure with preserved ejection fraction
- MHC, myosin heavy chain
- MMP, matrix metalloproteinase
- MRTF, myocardin-related transcription factor
- NFAT, nuclear factor of activated T cell
- PICP, procollagen type 1 carboxy-terminal peptide
- PIIINP, procollagen type III amino-terminal
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRPC, transient receptor potential canonical
- cardiac remodeling
- mitochondria
- redox/energy metabolism
- supersulphide
- transient receptor potential
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Ishii
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
2
|
Wang Y, Gai S, Zhang W, Huang X, Ma S, Huo Y, Wu Y, Tu H, Pin JP, Rondard P, Xu C, Liu J. The GABA B receptor mediates neuroprotection by coupling to G 13. Sci Signal 2021; 14:eaaz4112. [PMID: 34665640 DOI: 10.1126/scisignal.aaz4112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yunyun Wang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Siyu Gai
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xuetao Huang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shumin Ma
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yujia Huo
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yichen Wu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Haijun Tu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chanjuan Xu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| |
Collapse
|
3
|
Kim HR, Xu J, Maeda S, Duc NM, Ahn D, Du Y, Chung KY. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. Nat Commun 2020; 11:3160. [PMID: 32572026 PMCID: PMC7308389 DOI: 10.1038/s41467-020-16975-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Heterotrimeric G proteins are categorized into four main families based on their function and sequence, Gs, Gi/o, Gq/11, and G12/13. One receptor can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. However, the precise mechanism underlying different coupling efficiencies is unknown. Here, we study the structural mechanism underlying primary and secondary Gi/o coupling, using the muscarinic acetylcholine receptor type 2 (M2R) as the primary Gi/o-coupling receptor and the β2-adrenergic receptor (β2AR, which primarily couples to Gs) as the secondary Gi/o-coupling receptor. Hydrogen/deuterium exchange mass spectrometry and mutagenesis studies reveal that the engagement of the distal C-terminus of Gαi/o with the receptor differentiates primary and secondary Gi/o couplings. This study suggests that the conserved hydrophobic residue within the intracellular loop 2 of the receptor (residue 34.51) is not critical for primary Gi/o-coupling; however, it might be important for secondary Gi/o-coupling. G protein-coupled receptors (GPCRs) can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. Here authors use hydrogen/deuterium exchange mass spectrometry and mutagenesis to study the structural mechanism underlying primary and secondary Gi/o coupling.
Collapse
Affiliation(s)
- Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jun Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.,Division of Precision Medicine, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, 2001 Longxiang Ave, Shenzhen, Guangdong, 518172, China.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Udayappan UK, Casey PJ. c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules 2017; 22:molecules22040612. [PMID: 28394299 PMCID: PMC6153990 DOI: 10.3390/molecules22040612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
GNA12 is the α subunit of a heterotrimeric G protein that possesses oncogenic potential. Activated GNA12 also promotes prostate and breast cancer cell invasion in vitro and in vivo, and its expression is up-regulated in many tumors, particularly metastatic tissues. In this study, we explored the control of expression of GNA12 in prostate cancer cells. Initial studies on LnCAP (low metastatic potential, containing low levels of GNA12) and PC3 (high metastatic potential, containing high GNA12 levels) cells revealed that GNA12 mRNA levels correlated with protein levels, suggesting control at the transcriptional level. To identify potential factors controlling GNA12 transcription, we cloned the upstream 5′ regulatory region of the human GNA12 gene and examined its activity using reporter assays. Deletion analysis revealed the highest level of promoter activity in a 784 bp region, and subsequent in silico analysis indicated the presence of transcription factor binding sites for C/EBP (CCAAT/enhancer binding protein), CREB1 (cAMP-response-element-binding protein 1), and c-Jun in this minimal element for transcriptional control. A small interfering RNA (siRNA) knockdown approach revealed that silencing of c-Jun expression significantly reduced GNA12 5′ regulatory region reporter activity. In addition, chromatin immunoprecipitation assays confirmed that c-Jun binds to the GNA12 5′ regulatory region in PC3 cells. Silencing of c-Jun expression reduced mRNA and protein levels of GNA12, but not the closely-related GNA13, in prostate cancer cells. Understanding the mechanisms by which GNA12 expression is controlled may aid in the development of therapies that target key elements responsible for GNA12-mediated tumor progression.
Collapse
Affiliation(s)
- Udhaya Kumari Udayappan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Clouet S, Di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, Lemaire A, Balligand JL, Beauloye C, Boeynaems JM, Communi D. Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy. J Biol Chem 2016; 291:15841-52. [PMID: 27231349 DOI: 10.1074/jbc.m115.684118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Sophie Clouet
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Larissa Di Pietrantonio
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | | | - Hrag Esfahani
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Michael Horckmans
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Marion Vanorlé
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Anne Lemaire
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Jean-Luc Balligand
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Christophe Beauloye
- the Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels
| | - Jean-Marie Boeynaems
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels, the Department of Laboratory Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Didier Communi
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels,
| |
Collapse
|
6
|
Yuan B, Cui J, Wang W, Deng K. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis. Biochem Biophys Res Commun 2016; 473:1240-1246. [PMID: 27084452 DOI: 10.1016/j.bbrc.2016.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China
| | - Jinquan Cui
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China.
| | - Wuliang Wang
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China
| | - Kehong Deng
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China
| |
Collapse
|
7
|
Nishimura A, Sunggip C, Tozaki-Saitoh H, Shimauchi T, Numaga-Tomita T, Hirano K, Ide T, Boeynaems JM, Kurose H, Tsuda M, Robaye B, Inoue K, Nishida M. Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II–induced hypertension. Sci Signal 2016; 9:ra7. [DOI: 10.1126/scisignal.aac9187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The angiotensin (Ang) type 1 receptor (AT1R) promotes functional and structural integrity of the arterial wall to contribute to vascular homeostasis, but this receptor also promotes hypertension. In our investigation of how Ang II signals are converted by the AT1R from physiological to pathological outputs, we found that the purinergic P2Y6 receptor (P2Y6R), an inflammation-inducible G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor (GPCR), promoted Ang II–induced hypertension in mice. In mice, deletion of P2Y6R attenuated Ang II–induced increase in blood pressure, vascular remodeling, oxidative stress, and endothelial dysfunction. AT1R and P2Y6R formed stable heterodimers, which enhanced G protein–dependent vascular hypertrophy but reduced β-arrestin–dependent AT1R internalization. Pharmacological disruption of AT1R-P2Y6R heterodimers by the P2Y6R antagonist MRS2578 suppressed Ang II–induced hypertension in mice. Furthermore, P2Y6R abundance increased with age in vascular smooth muscle cells. The increased abundance of P2Y6R converted AT1R-stimulated signaling in vascular smooth muscle cells from β-arrestin–dependent proliferation to G protein–dependent hypertrophy. These results suggest that increased formation of AT1R-P2Y6R heterodimers with age may increase the likelihood of hypertension induced by Ang II.
Collapse
|
8
|
Hewavitharana T, Wedegaertner PB. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Cell Signal 2015; 27:2444-51. [PMID: 26327583 PMCID: PMC4684484 DOI: 10.1016/j.cellsig.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023]
Abstract
Heterotrimeric G proteins function at diverse subcellular locations, in addition to canonical signaling at the plasma membrane (PM). Gβγ signals at the Golgi, via protein kinase D (PKD), to regulate fission of PM-destined vesicles. However, the mechanism by which Gβγ is regulated at the Golgi in this process remains elusive. Recent studies have revealed that PAQR3 (Progestin and AdipoQ Receptor 3), also called RKTG (Raf Kinase Trapping to the Golgi), interacts with the Gβ subunit and localizes Gβ to the Golgi thereby inhibiting Gβγ signaling at the PM. Herein we show that, in contrast to this inhibition of canonical Gβγ signaling at the PM, PAQR3 promotes Gβγ signaling at the Golgi. Expression of PAQR3 causes fragmentation of the Golgi, while a Gβ binding-deficient mutant of PAQR3 does not cause Golgi fragmentation. Also, a C-terminal fragment of GRK2 (GRK2ct), which interacts with Gβγ and inhibits Gβγ signaling, and gallein, a small molecule inhibitor of Gβγ, are both able to inhibit PAQR3-mediated Golgi fragmentation. Furthermore, a dominant negative form of PKD (PKD-DN) and a pharmacological inhibitor of PKD, Gö6976, also inhibit PAQR3-mediated fragmentation of the Golgi. Importantly, expression of the Gβ binding-deficient mutant of PAQR3 inhibits the constitutive transport of the model cargo protein VSV-G from the Golgi to the PM, indicating the involvement of PAQR3 in Golgi-to PM vesicle transport and a dominant negative role for this mutant. Collectively, these results reveal a novel role for the newly characterized, Golgi-localized PAQR3 in regulating Gβγ at the non-canonical subcellular location of the Golgi and thus for controlling Golgi-to-PM protein transport via the Gβγ-PKD signaling pathway.
Collapse
Affiliation(s)
- Thamara Hewavitharana
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th St., 839 BLSB, Philadelphia, PA 19107, United States.
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th St., 839 BLSB, Philadelphia, PA 19107, United States.
| |
Collapse
|
9
|
Wirth A, Wang S, Takefuji M, Tang C, Althoff TF, Schweda F, Wettschureck N, Offermanns S. Age-dependent blood pressure elevation is due to increased vascular smooth muscle tone mediated by G-protein signalling. Cardiovasc Res 2015; 109:131-40. [PMID: 26531127 DOI: 10.1093/cvr/cvv249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Arterial hypertension is a major risk factor for cardiovascular diseases. The kidney and its natriuretic function are in the centre of the prevailing models to explain the pathogenesis of hypertension; however, the mechanisms underlying blood pressure elevation remain unclear in most patients. Development of hypertension is strongly correlated with age, and this blood pressure increase typically accelerates in the fourth decade of life. The cause of age-dependent blood pressure elevation is poorly understood. This study aims to understand the role of procontractile G-protein-mediated signalling pathways in vascular smooth muscle in age-dependent hypertension. METHODS AND RESULTS Similar to humans at mid-life, we observed in 1-year-old mice elevated blood pressure levels without any evidence for increased vessel stiffness, impaired renal function, or endocrine abnormalities. Hypertensive aged mice showed signs of endothelial dysfunction and had an increased vascular formation of reactive oxygen species (ROS) and elevated endothelial ET-1 expression. Age-dependent hypertension could be normalized by ETA receptor blockade, smooth muscle-specific inactivation of the gene encoding the ETA receptor, as well as by acute disruption of downstream signalling via induction of smooth muscle-specific Gα12/Gα13, Gαq/Gα11, or LARG deficiency using tamoxifen-inducible smooth muscle-specific conditional mouse knock-out models. Induction of smooth muscle-specific ETA receptor deficiency normalized the blood pressure in aged mice despite the continuous presence of signs of endothelial dysfunction. CONCLUSION Age-dependent blood pressure elevation is due to a highly reversible activation of procontractile signalling in vascular smooth muscle cells indicating that increased vascular tone can be a primary factor in the development of hypertension.
Collapse
Affiliation(s)
- Angela Wirth
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Institute of Pharmacology, University of Heidelberg, ImNeuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Shengpeng Wang
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Mikito Takefuji
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Cong Tang
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Till F Althoff
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Zhao X, Ding EY, Yu OM, Xiang SY, Tan-Sah VP, Yung BS, Hedgpeth J, Neubig RR, Lau LF, Brown JH, Miyamoto S. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. J Mol Cell Cardiol 2014; 75:152-61. [PMID: 25106095 PMCID: PMC4157956 DOI: 10.1016/j.yjmcc.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 01/06/2023]
Abstract
Activation of RhoA, a low molecular-weight G-protein, plays an important role in protecting the heart against ischemic stress. Studies using non-cardiac cells demonstrate that the expression and subsequent secretion of the matricellular protein CCN1 is induced by GPCR agonists that activate RhoA. In this study we determined whether and how CCN1 is induced by GPCR agonists in cardiomyocytes and examined the role of CCN1 in ischemic cardioprotection in cardiomyocytes and the isolated perfused heart. In neonatal rat ventricular myocytes (NRVMs), sphingosine 1-phosphate (S1P), lysophosphatidic acid (LPA) and endothelin-1 induced robust increases in CCN1 expression while phenylephrine, isoproterenol and carbachol had little or no effect. The ability of agonists to activate the small G-protein RhoA correlated with their ability to induce CCN1. CCN1 induction by S1P was blocked when RhoA function was inhibited with C3 exoenzyme or a pharmacological RhoA inhibitor. Conversely overexpression of RhoA was sufficient to induce CCN1 expression. To delineate the signals downstream of RhoA we tested the role of MRTF-A (MKL1), a co-activator of SRF, in S1P-mediated CCN1 expression. S1P increased the nuclear accumulation of MRTF-A and this was inhibited by the functional inactivation of RhoA. In addition, pharmacological inhibitors of MRTF-A or knockdown of MRTF-A significantly diminished S1P-mediated CCN1 expression, indicating a requirement for RhoA/MRTF-A signaling. We also present data indicating that CCN1 is secreted following agonist treatment and RhoA activation, and binds to cells where it can serve an autocrine function. To determine the functional significance of CCN1 expression and signaling, simulated ischemia/reperfusion (sI/R)-induced apoptosis was assessed in NRVMs. The ability of S1P to protect against sI/R was significantly reduced by the inhibition of RhoA, ROCK or MRTF-A or by CCN1 knockdown. We also demonstrate that ischemia/reperfusion induces CCN1 expression in the isolated perfused heart and that this functions as a cardioprotective mechanism, evidenced by the significant increase in infarct development in response to I/R in the cardiac specific CCN1 KO relative to control mice. Our findings implicate CCN1 as a mediator of cardioprotection induced by GPCR agonists that activate RhoA/MRTF-A signaling.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Eric Y Ding
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Olivia M Yu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Sunny Y Xiang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Valerie P Tan-Sah
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Bryan S Yung
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Joe Hedgpeth
- CompleGen, Inc., 1124 Columbia Street, Seattle, WA 98104, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St./B440 Life Sciences, East Lansing, MI 48824, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 S Ashland, Chicago, IL 60607, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
11
|
Li L, Chen W, Liang Y, Ma H, Li W, Zhou Z, Li J, Ding Y, Ren J, Lin J, Han F, Wu J, Han J. The Gβγ-Src signaling pathway regulates TNF-induced necroptosis via control of necrosome translocation. Cell Res 2014; 24:417-32. [PMID: 24513853 DOI: 10.1038/cr.2014.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
Formation of multi-component signaling complex necrosomes is essential for tumor necrosis factor α (TNF)-induced programmed necrosis (also called necroptosis). However, the mechanisms of necroptosis are still largely unknown. We isolated a TNF-resistant L929 mutant cell line generated by retrovirus insertion and identified that disruption of the guanine nucleotide-binding protein γ 10 (Gγ10) gene is responsible for this phenotype. We further show that Gγ10 is involved in TNF-induced necroptosis and Gβ2 is the partner of Gγ10. Src is the downstream effector of Gβ2γ10 in TNF-induced necroptosis because TNF-induced Src activation was impaired upon Gγ10 knockdown. Gγ10 does not affect TNF-induced activation of NF-κB and MAPKs and the formation of necrosomes, but is required for trafficking of necrosomes to their potential functioning site, an unidentified subcellular organelle that can be fractionated into heterotypic membrane fractions. The TNF-induced Gβγ-Src signaling pathway is independent of RIP1/RIP3 kinase activity and necrosome formation, but is required for the necrosome to function.
Collapse
Affiliation(s)
- Lisheng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanze Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaoji Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huabin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenru Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junming Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juan Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Felicia Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T, Braun T, Althoff T, Offermanns S, Wettschureck N. G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation 2012; 126:1972-82. [PMID: 22972902 DOI: 10.1161/circulationaha.112.109256] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cardiac remodeling in response to pressure or volume overload plays an important role in the pathogenesis of heart failure. Various mechanisms have been suggested to translate mechanical stress into structural changes, one of them being the release of humoral factors such as angiotensin II and endothelin-1, which in turn promote cardiac hypertrophy and fibrosis. A large body of evidence suggests that the prohypertrophic effects of these factors are mediated by receptors coupled to the G(q/11) family of heterotrimeric G proteins. Most G(q/11)-coupled receptors, however, can also activate G proteins of the G(12/13) family, but the role of G(12/13) in cardiac remodeling is not understood. METHODS AND RESULTS We use siRNA-mediated knockdown in vitro and conditional gene inactivation in vivo to study the role of the G(12/13) family in pressure overload-induced cardiac remodeling. We show in detail that inducible cardiomyocyte-specific inactivation of the α subunit of G(13), Gα(13), does not affect basal heart function but protects mice from pressure overload-induced hypertrophy and fibrosis as efficiently as inactivation of Gα(q/11). Furthermore, inactivation of Gα(13) prevents the development of heart failure up to 1 year after overloading. On the molecular level, we show that Gα(13), but not Gα(q/11), controls agonist-induced expression of hypertrophy-specific genes through activation of the small GTPase RhoA and consecutive activation of myocardin-related transcription factors. CONCLUSION Our data show that the G(12/13) family of heterotrimeric G proteins is centrally involved in pressure overload-induced cardiac remodeling and plays a central role in the transition to heart failure.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Juneja J, Cushman I, Casey PJ. G12 signaling through c-Jun NH2-terminal kinase promotes breast cancer cell invasion. PLoS One 2011; 6:e26085. [PMID: 22087220 PMCID: PMC3210117 DOI: 10.1371/journal.pone.0026085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022] Open
Abstract
Signaling through the heterotrimeric G protein, G12, via Rho induces a striking increase in breast cancer cell invasion. In this study, evidence is provided that the c-Jun NH2-terminal kinase (JNK) is a key downstream effector of G12 on this pathway. Expression of constitutively-active Gα12 or activation of G12 signaling by thrombin leads to increased JNK and c-Jun phosphorylation. Pharmacologic inhibition of JNK or knockdown of JNK expression by siRNA significantly decreases G12-induced JNK activation as well as the ability of breast cancer cells to invade a reconstituted basement membrane. Furthermore, expression of dominant-negative Rho or treatment of cells with an inhibitor of the Rho kinase, ROCK, reduces G12-induced JNK and c-Jun activation, and ROCK inhibitor treatment also inhibits G12-induced cellular invasion. JNK knockdown or ROCK inhibitor treatment has no effect on activation of Rho by G12. Taken together, our data indicate that JNK activation is required for G12-induced invasion of breast cancer cells and that JNK is downstream of Rho and ROCK on this pathway. This study implicates a G12-stimulated mitogen-activated protein kinase cascade in cancer cell invasion, and supports a role for JNK in cancer progression.
Collapse
Affiliation(s)
- Juhi Juneja
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ian Cushman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Patrick J. Casey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
14
|
Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Cell Signal 2011; 24:333-41. [PMID: 21964067 DOI: 10.1016/j.cellsig.2011.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/09/2011] [Accepted: 09/11/2011] [Indexed: 01/05/2023]
Abstract
The Gq-coupled oxytocin receptor (OTR) and the Gs-coupled β(2)-adrenergic receptor (β(2)AR) are both expressed in myometrial cells and mediate uterine contraction and relaxation, respectively. The two receptors represent important pharmacological targets as OTR antagonists and β(2)AR agonists are used to control pre-term uterine contractions. Despite their physiologically antagonistic effects, both receptors activate the MAP kinases ERK1/2, which has been implicated in uterine contraction and the onset of labor. To determine the signalling pathways involved in mediating the ERK1/2 response, we assessed the effect of blockers of specific G protein-associated pathways. In human myometrial hTERT-C3 cells, inhibition of Gαi as well as inhibition of the Gαq/PKC pathway led to a reduction of both OTR- and β(2)AR-mediated ERK1/2 activation. The involvement of Gαq/PKC in β(2)AR-mediated ERK1/2 induction was unexpected. To test whether the emergence of this novel signalling mechanism was dependent on OTR expression in the same cell, we conducted experiments in HEK 293 cells that were transfected with the β(2)AR alone or co-transfected with the OTR. Using this approach, we found that β(2)AR-mediated ERK1/2 responses became sensitive to PKC inhibition only in cells co-transfected with the OTR. Inhibitor studies indicated the involvement of an atypical PKC isoform in this process. We confirmed the specific involvement of PKCζ in this pathway by assessing PKCζ translocation to the cell membrane. Consistent with our inhibitor studies, we found that β(2)AR-mediated PKCζ translocation was dependent on co-expression of OTR. The present demonstration of a novel β(2)AR-coupled signalling pathway that is dependent on OTR co-expression is suggestive of a molecular interaction between the two receptors.
Collapse
|
15
|
Nishida M. Roles of heterotrimeric GTP-binding proteins in the progression of heart failure. J Pharmacol Sci 2011; 117:1-5. [PMID: 21821969 DOI: 10.1254/jphs.11r05cp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Heart failure is a major cause of death in developed countries, and the development of an epoch-making cure is desired from the viewpoint for improving the quality of life and reducing the medical cost of the patient. The importance of neurohumoral factors, such as angiotensin (Ang) II and catecholamine, for the progression of heart failure has been supported by a variety of evidence. These agonists stimulate seven transmembrane-spanning receptors that are coupled to heterotrimeric GTP-binding proteins (G proteins). Using specific pharmacological tools to assess the involvement of G protein signaling pathways, we have revealed that α subunit of G(q) (Gα(q)) activates Ca(2+)-dependent hypertrophic signaling through diacylglycerol-activated transient receptor potential canonical (TRPC) channels (TRPC3 and TRPC6: TRPC3/6). In contrast, activation of Gα(12) family proteins in cardiomyocytes confers pressure overload-induced cardiac fibrosis via stimulation of purinergic P2Y(6) receptors induced by extracellular nucleotides released from cardiomyocytes. In fact, direct or indirect inhibition of TRPC3/6 or P2Y(6) receptors attenuates pressure overload-induced cardiac dysfunction. These findings will provide a new insight into the molecular mechanisms underlying pathogenesis of heart failure.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan.
| |
Collapse
|
16
|
Involvement of vasodilator-stimulated phosphoprotein in UDP-induced microglial actin aggregation via PKC- and Rho-dependent pathways. Purinergic Signal 2011; 7:403-11. [PMID: 21567128 DOI: 10.1007/s11302-011-9237-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/02/2011] [Indexed: 12/22/2022] Open
Abstract
Microglia are major immunocompetent cells in the central nervous system and retain highly dynamic motility. The processes which allow these cells to move, such as chemotaxis and phagocytosis, are considered part of their functions and are closely related to purinergic signaling. Previously, we reported that the activation of the P2Y(6) receptor by UDP stimulation in microglia evoked dynamic cell motility which enhanced their phagocytic capacity, as reported by Koizumi et al. (Nature 446(7139):1091-1095, 2007). These responses require actin cytoskeletal rearrangement, which is seen after UDP stimulation. However, the intracellular signaling pathway has not been defined. In this study, we found that UDP in rat primary microglia rapidly induced the transient phosphorylation at Ser157 of vasodilator-stimulated phosphoprotein (VASP). VASP, one of actin binding protein, accumulated at the plasma membrane where filamentous (F)-actin aggregated in a time-dependent manner. The phosphorylation of VASP was suppressed by inhibition of PKC. UDP-induced local actin aggregations were also abrogated by PKC inhibitors. The Rho inhibitor CT04 and the expression of p115-RGS, which suppresses G(12/13) signaling, attenuated UDP-induced phosphorylation of VASP and actin aggregation. These results indicate that PKC- and Rho-dependent phosphorylation of VASP is involved in UDP-induced actin aggregation of microglia.
Collapse
|
17
|
Sato K, Horiuchi Y, Jin Y, Malchinkhuu E, Komachi M, Kondo T, Okajima F. Unmasking of LPA1 receptor-mediated migration response to lysophosphatidic acid by interleukin-1β-induced attenuation of Rho signaling pathways in rat astrocytes. J Neurochem 2011; 117:164-74. [PMID: 21244430 DOI: 10.1111/j.1471-4159.2011.07188.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration activity in response to LPA. The LPS induction of the migration response to LPA was associated with the production of IL-1β precursor protein and inhibited by the IL-1 receptor antagonist. The IL-1β treatment also allowed LPA to activate Rac1. The LPA-induced Rac1 activation and migration were inhibited by pertussis toxin, a small interfering RNA specific to LPA(1) receptors, and LPA(1) receptor antagonists, including Ki16425. However, the IL-1β treatment had no appreciable effect on LPA(1) receptor mRNA expression and LPA-induced activation of ERK, Akt, and proliferation. The induction of the migration response to LPA by IL-1β was inhibited by a constitutively active RhoA. Moreover, LPA significantly activated RhoA through the LPA(1) receptor in the control cells but not in the IL-1β-treated cells. These results suggest that IL-1β inhibits the LPA(1) receptor-mediated Rho signaling through the IL-1 receptor, thereby disclosing the LPA(1) receptor-mediated G(i) protein/Rac/migration pathway.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Matsuzaki S, Ishizuka T, Hisada T, Aoki H, Komachi M, Ichimonji I, Utsugi M, Ono A, Koga Y, Dobashi K, Kurose H, Tomura H, Mori M, Okajima F. Lysophosphatidic acid inhibits CC chemokine ligand 5/RANTES production by blocking IRF-1-mediated gene transcription in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4863-72. [PMID: 20861350 DOI: 10.4049/jimmunol.1000904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid mediator that exerts a variety of biological responses through specific G-protein-coupled receptors (LPA(1)-LPA(5) and P2Y5). LPA is thought to be involved in airway inflammation by regulating the expression of anti-inflammatory and proinflammatory genes. Chemokines such as CCL5/RANTES are secreted from airway epithelium and play a key role in allergic airway inflammation. CCL5/RANTES is a chemoattractant for eosinophils, T lymphocytes, and monocytes and seems to exacerbate asthma. We stimulated CCL5/RANTES production in a human bronchial epithelial cell line, BEAS-2B, with IFN-γ and TNF-α. When LPA was added, CCL5/RANTES mRNA expression and protein secretion were inhibited, despite the presence of IFN-γ and TNF-α. The LPA effect was attenuated by Ki16425, a LPA(1)/LPA(3) antagonist, but not by dioctylglycerol pyrophosphate 8:0, an LPA(3) antagonist. Pertussis toxin, the inhibitors for PI3K and Akt also attenuated the inhibitory effect of LPA on CCL5/RANTES secretion. We also identify the transcription factor IFN regulatory factor-1 (IRF-1) as being essential for CCL5/RANTES production. Interestingly, LPA inhibited IFN-γ and TNF-α-induced IRF-1 activation by blocking the binding of IRF-1 to its DNA consensus sequence without changing IRF-1 induction and its nuclear translocation. Ki16425, pertussis toxin, and PI3K inhibitors attenuated the inhibitory effect of LPA on IRF-1 activation. Our results suggest that LPA inhibits IFN-γ- and TNF-α-induced CCL5/RANTES production in BEAS-2B cells by blocking the binding of IRF-1 to the CCL5/RANTES promoter. LPA(1) coupled to G(i) and activation of PI3K is required for this unique effect.
Collapse
Affiliation(s)
- Shinichi Matsuzaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 PMCID: PMC3005405 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Dominic P. Del Re
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Sunny Y. Xiang
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Xia Zhao
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Geir Florholmen
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| |
Collapse
|
20
|
Nishida M, Suda R, Nagamatsu Y, Tanabe S, Onohara N, Nakaya M, Kanaho Y, Shibata T, Uchida K, Sumimoto H, Sato Y, Kurose H. Pertussis toxin up-regulates angiotensin type 1 receptors through Toll-like receptor 4-mediated Rac activation. J Biol Chem 2010; 285:15268-15277. [PMID: 20231290 PMCID: PMC2865339 DOI: 10.1074/jbc.m109.076232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 03/08/2010] [Indexed: 02/05/2023] Open
Abstract
Pertussis toxin (PTX) is recognized as a specific tool that uncouples receptors from G(i) and G(o) through ADP-ribosylation. During the study analyzing the effects of PTX on Ang II type 1 receptor (AT1R) function in cardiac fibroblasts, we found that PTX increases the number of AT1Rs and enhances AT1R-mediated response. Microarray analysis revealed that PTX increases the induction of interleukin (IL)-1beta among cytokines. Inhibition of IL-1beta suppressed the enhancement of AT1R-mediated response by PTX. PTX increased the expression of IL-1beta and AT1R through NF-kappaB, and a small GTP-binding protein, Rac, mediated PTX-induced NF-kappaB activation through NADPH oxidase-dependent production of reactive oxygen species. PTX induced biphasic increases in Rac activity, and the Rac activation in a late but not an early phase was suppressed by IL-1beta siRNA, suggesting that IL-1beta-induced Rac activation contributes to the amplification of Rac-dependent signaling induced by PTX. Furthermore, inhibition of TLR4 (Toll-like receptor 4) abolished PTX-induced Rac activation and enhancement of AT1R function. However, ADP-ribosylation of G(i)/G(o) by PTX was not affected by inhibition of TLR4. Thus, PTX binds to two receptors; one is TLR4, which activates Rac, and another is the binding site that is required for ADP-ribosylation of G(i)/G(o).
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Reiko Suda
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yuichi Nagamatsu
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Shihori Tanabe
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Setagaya, Tokyo 158-8501
| | - Naoya Onohara
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yoji Sato
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Setagaya, Tokyo 158-8501
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582.
| |
Collapse
|
21
|
Nishida M, Watanabe K, Nakaya M, Kurose H. [Mechanism of cardiac hypertrophy via diacylglycerol-sensitive TRPC channels]. YAKUGAKU ZASSHI 2010; 130:295-302. [PMID: 20190513 DOI: 10.1248/yakushi.130.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of Ca(2+) signaling in cardiomyocytes induced by receptor stimulation or mechanical stress has been implicated in the development of cardiac hypertrophy. However, it is still unclear how intracellular Ca(2+) targets specifically decode the alteration of intracellular Ca(2+) concentration ([Ca(2+)](i)) on the background of the rhythmic Ca(2+) increases required for muscle contraction. In excitable cardiomyocytes, changes in the frequency or amplitude of Ca(2+) transients evoked by Ca(2+) influx-induced Ca(2+) release have been suggested to encode signals for induction of hypertrophy, and a partial depolarization of plasma membrane by receptor stimulation will increase the frequency of Ca(2+) oscillations. We found that activation of diacylglycerol (DAG)-responsive canonical transient receptor potential (TRPC) subfamily channels (TRPC3 and TRPC6) mediate membrane depolarization induced by G(q) protein-coupled receptor stimulation. DAG-mediated membrane depolarization through activation of TRPC3/TRPC6 channels increases the frequency of Ca(2+) spikes, leading to activation of calcineurin-dependent signaling pathways. Inhibition of either TRPC3 or TRPC6 completely suppressed agonist-induced hypertrophic responses, suggesting that TRPC3 and TRPC6 form heterotetramer channels. Furthermore, we found that hypertrophic agonists increase the expression of TRPC6 proteins through activation of G(12) family proteins, leading to amplification of DAG-mediated hypertrophic signaling in cardiomyocytes. As heart failure proceeds through cardiac hypertrophy, TRPC3/TRPC6 channels may be a new therapeutic target for heart failure.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan.
| | | | | | | |
Collapse
|
22
|
Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, Kimura T, Kurose H, Tomura H, Okajima F. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell 2010; 20:5156-65. [PMID: 19864456 DOI: 10.1091/mbc.e09-08-0692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The clarification of mechanisms that negatively regulate the invasive behavior of human glioma cells is of great importance in order to find new methods of treatment. In this study, we have focused on the negative regulation of lysophosphatidic acid (LPA)-induced migration in glioma cells. Using small interference RNA and dominant-negative gene strategies in addition to pharmacological tools, we found that isoproterenol (ISO) and sphingosine-1-phosphate (S1P) negatively but differently regulate the LPA-induced migration. ISO-induced suppression of the migration of glioma cells occurs via beta(2)-adrenergic receptor/cAMP/Epac/Rap1B/inhibition of Rac, whereas S1P has been shown to suppress the migration of the cells through S1P(2) receptor/Rho-mediated down-regulation of Rac1. The expression of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is required for the inhibitory ISO-induced and Rap1B-mediated actions on the migration, Rac1 activation, and Akt activation in response to LPA. Thus, the PTEN-mediated down-regulation of phosphatidylinositol 3-kinase activity may be involved in the regulation of Rap1B-dependent inhibition of Rac1 activity. These findings suggest that there are at least two distinct inhibitory pathways, which are mediated by the S1P(2) receptor and beta(2)-adrenergic receptor, to control the migratory, hence invasive, behavior of glioma cells.
Collapse
Affiliation(s)
- Enkhzol Malchinkhuu
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The GRK2 Overexpression Is a Primary Hallmark of Mitochondrial Lesions during Early Alzheimer Disease. Cardiovasc Psychiatry Neurol 2010; 2009:327360. [PMID: 20204079 PMCID: PMC2832107 DOI: 10.1155/2009/327360] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/16/2009] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence points to vascular damage as an early contributor to the development of two leading causes of age-associated dementia, namely Alzheimer disease (AD) and AD-like pathology such as stroke. This review focuses on the role of G protein-coupled receptor kinases (GRKs) as they relate to dementia and how the cardio and cerebrovasculature is involved in AD pathogenesis. The exploration of GRKs in AD pathogenesis may help bridge gaps in our understanding of the heart-brain connection in relation to neurovisceral damage and vascular complications of AD. The a priori basis for this inquiry stems from the fact that kinases of this family regulate numerous receptor functions in the brain, myocardium and elsewhere. The aim of this review is to discuss the finding of GRK2 overexpression in the context of early AD pathogenesis. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis through the cerebrovasculature. Finally, we synthesize this newer information in an attempt to put it into context with GRKs as regulators of cellular function, which makes these proteins potential diagnostic and therapeutic targets for future pharmacological intervention.
Collapse
|
24
|
Kimura T, Tomura H, Sato K, Ito M, Matsuoka I, Im DS, Kuwabara A, Mogi C, Itoh H, Kurose H, Murakami M, Okajima F. Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J Biol Chem 2009; 285:4387-97. [PMID: 20018878 DOI: 10.1074/jbc.m109.043869] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The upstream signaling pathway leading to the activation of AMP-activated protein kinase (AMPK) by high density lipoprotein (HDL) and the role of AMPK in HDL-induced antiatherogenic actions were investigated. Experiments using genetic and pharmacological tools showed that HDL-induced activation of AMPK is dependent on both sphingosine 1-phosphate receptors and scavenger receptor class B type I through calcium/calmodulin-dependent protein kinase kinase and, for scavenger receptor class B type I system, additionally serine-threonine kinase LKB1 in human umbilical vein endothelial cells. HDL-induced activation of Akt and endothelial NO synthase, stimulation of migration, and inhibition of monocyte adhesion and adhesion molecule expression were dependent on AMPK activation. The inhibitory role of AMPK in the adhesion molecule expression and monocyte adhesion on endothelium of mouse aorta was confirmed in vivo and ex vivo. On the other hand, stimulation of ERK and proliferation were hardly affected by AMPK knockdown but completely inhibited by an N17Ras, whereas the dominant-negative Ras was ineffective for AMPK activation. In conclusion, dual HDL receptor systems differentially regulate AMPK activity through calcium/calmodulin-dependent protein kinase kinase and/or LKB1. Several HDL-induced antiatherogenic actions are regulated by AMPK, but proliferation-related actions are regulated by Ras rather than AMPK.
Collapse
Affiliation(s)
- Takao Kimura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Horinouchi T, Asano H, Higa T, Nishimoto A, Nishiya T, Muramatsu I, Miwa S. Differential coupling of human endothelin type A receptor to G(q/11) and G(12) proteins: the functional significance of receptor expression level in generating multiple receptor signaling. J Pharmacol Sci 2009; 111:338-51. [PMID: 19942800 DOI: 10.1254/jphs.09233fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study examines the influence of receptor expression level on signaling pathways activated via endothelin type A receptor (ET(A)R) expressed in Chinese hamster ovary cells at 32,100 (ET(A)R-high-CHO) and 893 (ET(A)R-low-CHO) fmolmg protein(-1). Endothelin-1 (ET-1) elicited a sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which was dependent on G(q/11) protein, phospholipase C (PLC), Na(+)/H(+) exchanger (NHE), and p38 mitogen-activated protein kinase (p38MAPK) in ET(A)R-high-CHO, whereas the sustained [Ca(2+)](i) increase was negligible in ET(A)R-low-CHO. Functional study with Cytosensor(TM) microphysiometer showed that ET-1 evoked an NHE1-mediated increase in extracellular acidification rate (ECAR) in ET(A)R-high-CHO and ET(A)R-low-CHO. In ET(A)R-high-CHO, the ECAR response at 30 min after ET-1 stimulation was insensitive to G(q/11) and PLC inhibitors, but sensitive to the p38MAPK inhibitor. In ET(A)R-low-CHO, the ECAR response at 30 min was sensitive to these inhibitors. Western blot analysis demonstrated that ET-1-induced p38MAPK phosphorylation in ET(A)R-low-CHO but not in ET(A)R-high-CHO was mediated via G(q/11) and PLC. The G(q/11)/PLC-independent p38MAPK phosphorylation in ET(A)R-high-CHO was suppressed by expression of the C terminus of G(alpha12) protein to disrupt receptor-G(12) protein coupling. These results provide evidence for multiple signaling pathways of ET(A)R that were activated via at least the G(q/11)/PLC/NHE, G(12)/p38MAPK/NHE, and G(q/11)/PLC/p38MAPK/NHE cascades in an expression level-dependent manner.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Nishida M, Sato Y, Nakaya M, Kurose H. [Regulation of cardiac hypertrophy by the formation of G protein-coupled receptor--TRPC channel protein complex]. Nihon Yakurigaku Zasshi 2009; 134:131-136. [PMID: 19749484 DOI: 10.1254/fpj.134.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
27
|
Espada S, Rojo AI, Salinas M, Cuadrado A. The muscarinic M1 receptor activates Nrf2 through a signaling cascade that involves protein kinase C and inhibition of GSK-3beta: connecting neurotransmission with neuroprotection. J Neurochem 2009; 110:1107-19. [PMID: 19558456 DOI: 10.1111/j.1471-4159.2009.06208.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we provide evidence that the muscarinic M1 receptor targets NF-E2-related factor-2 (Nrf2), a transcription factor that regulates the expression of genes containing antioxidant response elements (AREs) in their promoters and that collectively constitute the phase II antioxidant response. In hippocampal primary and cerebellar granule neuron cultures expressing endogenous M1 receptor, carbachol increased the levels of a prototypical phase II antioxidant enzyme, heme oxygenase-1. Moreover, in a heterologous system, based on lentiviral expression of M1 receptor in PC12 pheochromocytoma cells, we found that M1 increased total and nuclear Nrf2 protein levels and heme oxygenase-1 messenger RNA and protein levels. Luciferase reporter constructs for AREs and the use of two inhibitors of protein kinase C (PKC), chelerythrine and 2-aminoethyl diphenylborinate, or transfection with relevant expression vectors allowed us to identify Galphaq, phospholipase C-beta and the classical PKC-gamma isoenzyme, as responsible for the regulation of Nrf2. A PKC-insensitive Nrf2S40A single-point mutant partially channeled M1 signaling to AREs, therefore suggesting the participation of additional intermediates. Inhibition of glycogen synthase kinase-3beta (GSK-3beta) augmented M1-dependent activation of AREs while a PKC-insensitive mutant of GSK-3beta (GSK-3beta-Delta9) blocked this effect and prevented M1-induced accumulation of Nrf2 in the nucleus. Our results demonstrate a previously unidentified role of the Galphaq/phospholipase C-beta/PKC/GSK-3beta axis in regulation of Nrf2 by M1. Such role provides additional conceptual support for the use of cholinemimetics in the treatment of pathologies that, like Alzheimer's disease, require a reinforcement of the cell antioxidant capacity.
Collapse
Affiliation(s)
- Sandra Espada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Obrenovich ME, Morales LA, Cobb CJ, Shenk JC, Méndez GM, Fischbach K, Smith MA, Qasimov EK, Perry G, Aliev G. Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation. J Cell Mol Med 2009; 13:853-65. [PMID: 19292735 PMCID: PMC2919803 DOI: 10.1111/j.1582-4934.2008.00512.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/23/2008] [Indexed: 12/25/2022] Open
Abstract
Alzheimer disease (AD) and stroke are two leading causes of age-associated dementia. Increasing evidence points to vascular damage as an early contributor to the development of AD and AD-like pathology. In this review, we discuss the role of G protein-coupled receptor kinase 2 (GRK2) as it relates to individuals affected by AD and how the cardiovasculature plays a role in AD pathogenesis. The possible involvement of GRKs in AD pathogenesis is an interesting notion, which may help bridge the gap in our understanding of the heartbrain connection in relation to neurovisceral damage and vascular complications in AD, since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium, and elsewhere. The aim of this review is to discuss our findings of overexpression of GRK2 in the context of the early pathogenesis of AD, because increased levels of GRK2 immunoreactivity were found in vulnerable neurons of AD patients as well as in a two-vessel occlusion (2-VO) mammalian model of ischaemia. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis, particularly in the context of cerebrovascular disease. We synthesize this newer information and attempt to put it into context with GRKs as regulators of diverse physiological cellular functions that could be appropriate targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ludis A Morales
- Department of Nutrition and Biochemistry, Faculty of Sciences, Javeriana University, Bogota D.C., Colombia
| | - Celia J Cobb
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Electron Microscopy Research Center, University of Texas at San Antonio, San Antonio, TX, USA
| | - Justin C Shenk
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Electron Microscopy Research Center, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gina M Méndez
- Department of Nutrition and Biochemistry, Faculty of Sciences, Javeriana University, Bogota D.C., Colombia
| | - Kathryn Fischbach
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Electron Microscopy Research Center, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Eldar K Qasimov
- Department of Cytology, Histology & Embryology, Azerbaijan Medical University, Baku, Azerbaijan
| | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gjumrakch Aliev
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Electron Microscopy Research Center, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
Abstract
The G12 subfamily of heterotrimeric guanine nucleotide-binding proteins consists of two alpha subunits, G alpha12 and G alpha13. These proteins mediate signalling via G protein-coupled receptors and have been implicated in various physiological and pathophysiological processes. A number of direct and indirect effectors of G alpha12 and G alpha13 have been identified that mediate, or have been proposed to mediate, the diverse cellular responses accompanying activation of G12 proteins. This review describes the signalling pathways and cellular events stimulated by G12 proteins, with a particular emphasis on processes that are important in regulating cell migration and invasion, and could potentially be involved in the pathophysiology of cancer metastasis. Experimental findings directly implicating G12 proteins in the spread of metastatic disease are also summarized, indicating the importance of targeted inhibition of G12 signalling as a potential therapeutic option for locally advanced and metastatic disease.
Collapse
Affiliation(s)
- Juhi Juneja
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710-3813, USA
| | | |
Collapse
|
30
|
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. ACTA ACUST UNITED AC 2009; 184:909-21. [PMID: 19307601 PMCID: PMC2664974 DOI: 10.1083/jcb.200805148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Galpha(12/13) regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Galpha(12/13) modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Galpha(12/13) regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Lin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, Kimura T, Kuwabara A, Ohta H, Im DS, Kurose H, Takeyoshi I, Sato K, Okajima F. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis 2009; 30:457-65. [PMID: 19129242 DOI: 10.1093/carcin/bgp011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malignant ascites from pancreatic cancer patients has been reported to stimulate migration of pancreatic cancer cells through lysophosphatidic acid (LPA) and LPA(1) receptors. Indeed, ascites- and LPA-induced migration was inhibited by Ki16425, an LPA(1) and LPA(3) antagonist, in Panc-1 cells. Unexpectedly, however, in the presence of Ki16425, ascites and LPA inhibited cell migration in response to epidermal growth factor (EGF). The inhibitory migratory response to ascites and LPA was also observed in the cells treated with pertussis toxin (PTX), a G(i) protein inhibitor, and attenuated by a small interfering RNA (siRNA) specific to the LPA(2) receptor. The inhibitory LPA action was reversed by the regulators of G-protein signaling domain of p115RhoGEF, dominant-negative RhoA or C3 toxin. Indeed, LPA activated RhoA, which was attenuated by the siRNA against the LPA(2) receptor. Moreover, LP-105, an LPA(2) agonist, also inhibited EGF-induced migration in the PTX-treated cells. A similar inhibitory migration response through LPA(2) receptors was also observed in YAPC-PD, BxPC-3, CFPAC-1 and PK-1 pancreatic cancer cell lines. LPA also inhibited the invasion of Panc-1 cells in the PTX-treated cells in the in vitro Matrigel invasion assay. We conclude that LPA(2) receptors are coupled to the G(12/13) protein/Rho-signaling pathway, leading to the inhibition of EGF-induced migration and invasion of pancreatic cancer cells.
Collapse
Affiliation(s)
- Mayumi Komachi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kimura T, Mogi C, Tomura H, Kuwabara A, Im DS, Sato K, Kurose H, Murakami M, Okajima F. Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7332-40. [PMID: 18981156 DOI: 10.4049/jimmunol.181.10.7332] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Changes in plasma lipoprotein profiles, especially low levels of high-density lipoprotein (HDL), are a common biomarker for several inflammatory and immune diseases, including atherosclerosis and rheumatoid arthritis. We examined the effect of simvastatin on HDL-induced anti-inflammatory actions. HDL and sphingosine 1-phosphate (S1P), a bioactive lipid component of the lipoprotein, inhibited TNF alpha-induced expression of VCAM-1, which was associated with NO synthase (NOS) activation, in human umbilical venous endothelial cells. The HDL- but not S1P-induced anti-inflammatory actions were enhanced by a prior treatment of the cells with simvastatin in a manner sensitive to mevalonic acid. Simvastatin stimulated the expression of scavenger receptor class B type I (SR-BI) and endothelial NOS. As for S1P receptors, however, the statin inhibited the expression of S1P(3) receptor mRNA but caused no detectable change in S1P(1) receptor expression. The reconstituted HDL, a stimulator of SR-BI, mimicked HDL actions in a simvastatin-sensitive manner. The HDL- and reconstituted HDL-induced actions were blocked by small interfering RNA specific to SR-BI regardless of simvastatin treatment. The statin-induced expression of SR-BI was attenuated by constitutively active RhoA and small interfering RNA specific to peroxisome proliferator-activated receptor-alpha. Administration of simvastatin in vivo stimulated endothelial SR-BI expression, which was accompanied by the inhibition of the ex vivo monocyte adhesion in aortas from TNF alpha-injected mice. In conclusion, simvastatin induces endothelial SR-BI expression through a RhoA- and peroxisome proliferator-activated receptor-alpha-dependent mechanism, thereby enhancing the HDL-induced activation of NOS and the inhibition of adhesion molecule expression.
Collapse
Affiliation(s)
- Takao Kimura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H. P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 2008; 27:3104-15. [PMID: 19008857 DOI: 10.1038/emboj.2008.237] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/15/2008] [Indexed: 11/09/2022] Open
Abstract
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix proteins, is one of the causes of heart failure, and it contributes to the impairment of cardiac function. Fibrosis of various tissues, including the heart, is believed to be regulated by the signalling pathway of angiotensin II (Ang II) and transforming growth factor (TGF)-beta. Transgenic expression of inhibitory polypeptides of the heterotrimeric G12 family G protein (Galpha(12/13)) in cardiomyocytes suppressed pressure overload-induced fibrosis without affecting hypertrophy. The expression of fibrogenic genes (TGF-beta, connective tissue growth factor, and periostin) and Ang-converting enzyme (ACE) was suppressed by the functional inhibition of Galpha(12/13). The expression of these fibrogenic genes through Galpha(12/13) by mechanical stretch was initiated by ATP and UDP released from cardiac myocytes through pannexin hemichannels. Inhibition of G-protein-coupled P2Y6 receptors suppressed the expression of ACE, fibrogenic genes, and cardiac fibrosis. These results indicate that activation of Galpha(12/13) in cardiomyocytes by the extracellular nucleotides-stimulated P2Y(6) receptor triggers fibrosis in pressure overload-induced cardiac fibrosis, which works as an upstream mediator of the signalling pathway between Ang II and TGF-beta.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roles of TRP channels in the development of cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:395-406. [DOI: 10.1007/s00210-008-0321-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
35
|
Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 2008; 283:14469-78. [PMID: 18378689 DOI: 10.1074/jbc.m708919200] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the developing forebrain, the migration and positioning of neural progenitor cells (NPCs) are regulated coordinately by various molecules. Mutation of these molecules, therefore, causes cortical malformation. GPR56 has been reported as a cortical malformation-related gene that is mutated in patients with bilateral frontoparietal polymicrogyria. GPR56 encodes an orphan G protein-coupled receptor, and its mutations reduce the cell surface expression. It has also been reported that the expression level of GPR56 is involved in cancer cell adhesion and metastasis. However, it remains to be clarified how GPR56 functions in brain development and which signaling pathways are activated by GPR56. In this study, we showed that GPR56 is highly expressed in NPCs and has the ability to inhibit NPC migration. We found that GPR56 coupled with Galpha(12/13) and induced Rho-dependent activation of the transcription mediated through a serum-responsive element and NF-kappaB-responsive element and actin fiber reorganization. The transcriptional activation and actin reorganization were inhibited by an RGS domain of the p115 Rho-specific guanine nucleotide exchange factor (p115 RhoGEF RGS) and dominant negative form of Rho. Moreover, we have demonstrated that a functional anti-GPR56 antibody, which has an agonistic activity, inhibited NPC migration. This inhibition was attenuated by p115 RhoGEF RGS, C3 exoenzyme, and GPR56 knockdown. These results indicate that GPR56 participates in the regulation of NPC movement through the Galpha(12/13) and Rho signaling pathway, suggesting its important role in the development of the central nervous system.
Collapse
Affiliation(s)
- Tokuichi Iguchi
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Malchinkhuu E, Sato K, Maehama T, Mogi C, Tomura H, Ishiuchi S, Yoshimoto Y, Kurose H, Okajima F. S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochem Biophys Res Commun 2007; 366:963-8. [PMID: 18088600 DOI: 10.1016/j.bbrc.2007.12.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) induced the inhibition of glioma cell migration. Here, we characterized the signaling mechanisms involved in the inhibitory action by S1P. In human GNS-3314 glioblastoma cells, the S1P-induced inhibition of cell migration was associated with activation of RhoA and suppression of Rac1. The inhibitory action of S1P was recovered by a small interference RNA specific to S1P(2) receptor, a carboxyl-terminal region of Galpha12 or Galpha13, an RGS domain of p115RhoGEF, and a dominant-negative mutant of RhoA. The inhibitory action of S1P through S1P(2) receptors was also observed in both U87MG glioblastoma and 1321N1 astrocytoma cells, which have no protein expression of a phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These results suggest that S1P(2) receptors/G(12/13)-proteins/Rho signaling pathways mediate S1P-induced inhibition of glioma cell migration. However, PTEN, recently postulated as an indispensable molecule for the inhibition of cell migration, may not be critical for the S1P(2) receptor-mediated action in glioma cells.
Collapse
Affiliation(s)
- Enkhzol Malchinkhuu
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kimple ME, Joseph JW, Bailey CL, Fueger PT, Hendry IA, Newgard CB, Casey PJ. Galphaz negatively regulates insulin secretion and glucose clearance. J Biol Chem 2007; 283:4560-7. [PMID: 18096703 DOI: 10.1074/jbc.m706481200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Relatively little is known about the in vivo functions of the alpha subunit of the heterotrimeric G protein Gz (Galphaz). Clues to one potential function recently emerged with the finding that activation of Galphaz inhibits glucose-stimulated insulin secretion in an insulinoma cell line (Kimple, M. E., Nixon, A. B., Kelly, P., Bailey, C. L., Young, K. H., Fields, T. A., and Casey, P. J. (2005) J. Biol. Chem. 280, 31708-31713). To extend this study in vivo, a Galphaz knock-out mouse model was utilized to determine whether Galphaz function plays a role in the inhibition of insulin secretion. No differences were discovered in the gross morphology of the pancreatic islets or in the islet DNA, protein, or insulin content between Galphaz-null and wild-type mice. There was also no difference between the insulin sensitivity of Galphaz-null mice and wild-type controls, as measured by insulin tolerance tests. Galphaz-null mice did, however, display increased plasma insulin concentrations and a corresponding increase in glucose clearance following intraperitoneal and oral glucose challenge as compared with wild-type controls. The increased plasma insulin observed in Galphaz-null mice is most likely a direct result of enhanced insulin secretion, since pancreatic islets isolated from Galphaz-null mice exhibited significantly higher glucose-stimulated insulin secretion than those of wild-type mice. Finally, the increased insulin secretion observed in Galphaz-null islets appears to be due to the relief of a tonic inhibition of adenylyl cyclase, as cAMP production was significantly increased in Galphaz-null islets in the absence of exogenous stimulation. These findings indicate that Galphaz may be a potential new target for therapeutics aimed at ameliorating beta-cell dysfunction in Type 2 diabetes.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Pharmacology, and The Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27710-3813, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
A lysophosphatidic acid receptor lacking the PDZ-binding domain is constitutively active and stimulates cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:748-59. [PMID: 18157949 DOI: 10.1016/j.bbamcr.2007.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/13/2007] [Accepted: 11/28/2007] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA) is an extracellular signaling lipid that regulates cell proliferation, survival, and motility of normal and cancer cells. These effects are produced through G protein-coupled LPA receptors, LPA(1) to LPA(5). We generated an LPA(1) mutant lacking the SerValVal sequence of the C-terminal PDZ-binding domain to examine the role of this domain in intracellular signaling and other cellular functions. B103 neuroblastoma cells expressing the mutant LPA(1) showed rapid cell proliferation and tended to form colonies under serum-free conditions. The enhanced cell proliferation of the mutant cells was inhibited by exogenous expression of the plasmids inhibiting G proteins including G(betagamma), G(alphai) and G(alphaq) or G(alpha12/13), or treatment with pertussis toxin, phosphoinositide 3-kinase (PI3K) inhibitors or a Rho inhibitor. We confirmed that the PI3K-Akt and Rho pathways were intrinsically activated in mutant cells by detecting increases in phosphorylated Akt in western blot analyses or by directly measuring Rho activity. Interestingly, expression of the mutant LPA(1) in non-tumor mouse fibroblasts induced colony formation in a clonogenic soft agar assay, indicating that oncogenic pathways were activated. Taken together, these observations suggest that the mutant LPA(1) constitutively activates the G protein signaling leading to PI3K-Akt and Rho pathways, resulting in enhanced cell proliferation.
Collapse
|
39
|
Kilts JD, Lin SS, Lowe JE, Kwatra MM. Selective activation of human atrial Galpha12 and Galpha13 by Galphaq-coupled angiotensin and endothelin receptors. J Cardiovasc Pharmacol 2007; 50:299-303. [PMID: 17878759 DOI: 10.1097/fjc.0b013e3180a72632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Galphaq-coupled receptors such as alpha1-adrenergic, angiotensin, and endothelin receptors, play key roles in cardiac physiology. These receptors have also been shown to couple to G proteins of the G12 family, including Galpha12 and Galpha13. In this report, we determined whether these G proteins interact with endothelin, angiotensin, and alpha1-adrenergic receptors in the human heart. We find that these receptors activate cardiac Galpha12 and Galpha13 differentially; endothelin receptors activate only Galpha12 (to 218 +/- 22% of unstimulated levels), angiotensin receptors activate only Galpha13 (to 236 +/- 49% of unstimulated levels), and alpha1-adrenergic receptors activate neither Galpha12 (123 +/- 18% of unstimulated levels) nor Galpha13 (113 +/- 12% of unstimulated levels). Consistent with these data, translocation of guanine nucleotide exchange factor p115RhoGEF, which responds to Galpha13, occurs only after stimulation of angiotensin receptors (shifting from 73 +/- 12% to 41 +/- 10% cytosolic). These differences in the activation of Galpha12 and Galpha13 by Galphaq-coupled receptors may underlie reported differences in the functions of these receptors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Angiotensins/physiology
- Atrial Appendage/metabolism
- Atrial Appendage/physiology
- Blotting, Western
- Endothelins/physiology
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/physiology
- Guanine Nucleotide Exchange Factors/metabolism
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Male
- Middle Aged
- Phenylephrine/pharmacology
- Photoaffinity Labels
- Protein Transport
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- Receptors, Endothelin/metabolism
- Receptors, Endothelin/physiology
- Rho Guanine Nucleotide Exchange Factors
Collapse
Affiliation(s)
- Jason D Kilts
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
40
|
Sphingosine-1-phosphate and endothelin-1 induce the expression of rgs16 protein in cardiac myocytes by transcriptional activation of the rgs16 gene. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:363-73. [PMID: 18046543 DOI: 10.1007/s00210-007-0214-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
The expression of the negative Regulator of G protein signaling 16 (RGS16) is rapidly induced in cardiomyocytes by various stimuli. To identify the promoter of the mouse RGS16 gene, a 1.8-kb deoxyribonucleic acid fragment 5' of the RGS16-coding region was subcloned into a firefly-luciferase reporter vector and four overlapping fragments were analyzed. The luciferase production was quantified in neonatal rat cardiac myocytes (NRCM). A 0.6-kb fragment that induced a tenfold increase in luciferase activity contained the minimal promoter sequence. Its activity was twofold stimulated by fetal calf serum, endothelin-1 (ET-1), and sphingosine 1-phosphate (S1P), which stimuli also elevated the level of RGS16 protein. Stimulation of NRCM with ET-1 induced activation of the monomeric GTPases RhoA and Rac1, whereas S1P and the selective S1P1 receptor agonist SEW2871 only induced a pronounced activation of Rac1. In accordance, the treatment with the Rho-, Rac-, and Cdc42-inactivating Clostridium difficile Toxin B (TcdB) 10463 inhibited ET-1 and S1P-induced transcriptional activation. The ET-1-induced activation was insensitive to pertussis toxin but selectively suppressed by the RhoA-C-specific C2I-C3 ADP-ribosyl transferase and the ET(B) receptor antagonist BQ788. The S1P-induced activation was specifically inhibited by pertussis toxin and the Rac-inactivating TcdB 1470. All stimulated transcriptional activity was abolished by the negative transcription factor Yin Yang 1 (YY1), which binds to a consensus sequence within the minimal promoter. Taken together, our data show that most likely ET(B)- and S1P1-receptors induce RGS16 protein expression in cardiac myocytes by increasing the transcriptional activity of the rgs16 gene. This activation is mediated by heterotrimeric G proteins, Rho GTPases, and is under negative control of the transcription factor YY1.
Collapse
|
41
|
Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y, Kurose H. Galpha12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 2007; 282:23117-23128. [PMID: 17533154 DOI: 10.1074/jbc.m611780200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sustained elevation of [Ca(2+)](i) has been implicated in many cellular events. We previously reported that alpha subunits of G(12) family G proteins (Galpha(12/13)) participate in sustained Ca(2+) influx required for the activation of nuclear factor of activated T cells (NFAT), a Ca(2+)-responsive transcriptional factor, in rat neonatal cardiac fibroblasts. Here, we demonstrate that Galpha(12/13)-mediated up-regulation of canonical transient receptor potential 6 (TRPC6) channels participates in sustained Ca(2+) influx and NFAT activation by endothelin (ET)-1 treatment. Expression of constitutively active Galpha(12) or Galpha(13) increased the expression of TRPC6 proteins and basal Ca(2+) influx activity. The treatment with ET-1 increased TRPC6 protein levels through Galpha(12/13), reactive oxygen species, and c-Jun N-terminal kinase (JNK)-dependent pathways. NFAT is activated by sustained increase in [Ca(2+)](i) through up-regulated TRPC6. A Galpha(12/13)-inhibitory polypeptide derived from the regulator of the G-protein signaling domain of p115-Rho guanine nucleotide exchange factor and a JNK inhibitor, SP600125, suppressed the ET-1-induced increase in expression of marker proteins of myofibroblast formation through a Galpha(12/13)-reactive oxygen species-JNK pathway. The ET-1-induced myofibroblast formation was suppressed by overexpression of TRPC6 and CA NFAT, whereas it was enhanced by TRPC6 small interfering RNAs and cyclosporine A. These results suggest two opposite roles of Galpha(12/13) in cardiac fibroblasts. First, Galpha(12/13) mediate ET-1-induced myofibroblast formation. Second, Galpha(12/13) mediate TRPC6 up-regulation and NFAT activation that negatively regulates ET-1-induced myofibroblast formation. Furthermore, TRPC6 mediates hypertrophic responses in cardiac myocytes but suppresses fibrotic responses in cardiac fibroblasts. Thus, TRPC6 mediates opposite responses in cardiac myocytes and fibroblasts.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
Collapse
Affiliation(s)
- Z G Goldsmith
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
43
|
Hinata M, Matsuoka I, Iwamoto T, Watanabe Y, Kimura J. Mechanism of Na+/Ca2+ exchanger activation by hydrogen peroxide in guinea-pig ventricular myocytes. J Pharmacol Sci 2007; 103:283-92. [PMID: 17332693 DOI: 10.1254/jphs.fp0060015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Using the whole-cell voltage clamp, we examined the mechanism of activation of the Na(+)/Ca(2+) exchanger (NCX) by hydrogen peroxide (H(2)O(2)) in isolated guinea-pig cardiac ventricular myocytes. Exposure to H(2)O(2) increased the NCX current. The effect was inhibited by cariporide, an inhibitor of the Na(+)/H(+) exchanger (NHE), suggesting that there are NHE-dependent and -independent pathways in the effect of H(2)O(2) on NCX. In addition, both pathways were blocked by edaravone, a hydroxyl radical (*OH) scavenger; pertussis toxin, a Galpha(i/o) protein inhibitor; and U0126, an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK). On the other hand, wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited only the NHE-dependent pathway, while PP2, a Src family protein tyrosine kinase inhibitor, inhibited only the NHE-independent pathway. Taken together, our data suggest that H(2)O(2) increases the NCX current via two signal transduction pathways. The common pathway is the conversion of H(2)O(2) to *OH, which activates Galpha(i/o) protein and a mitogen-activated protein (MAP) kinase signaling pathway. Then, one pathway activates NHE with a PI3K-dependent mechanism and indirectly increases the NCX current. Another pathway involves activation of a Src family tyrosine kinase.
Collapse
Affiliation(s)
- Masamitsu Hinata
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | | | | | | | | |
Collapse
|
44
|
Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 2006; 25:5305-16. [PMID: 17082763 PMCID: PMC1636614 DOI: 10.1038/sj.emboj.7601417] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 10/11/2006] [Indexed: 12/28/2022] Open
Abstract
Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II-induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca(2+)-responsive transcriptional factor. It is believed that phospholipase C (PLC)-mediated production of inositol-1,4,5-trisphosphate (IP(3)) is responsible for Ca(2+) increase that is necessary for NFAT activation. However, we demonstrate that PLC-mediated production of diacylglycerol (DAG) but not IP(3) is essential for Ang II-induced NFAT activation in rat cardiac myocytes. NFAT activation and hypertrophic responses by Ang II stimulation required the enhanced frequency of Ca(2+) oscillation triggered by membrane depolarization through activation of DAG-sensitive TRPC channels, which leads to activation of L-type Ca(2+) channel. Patch clamp recordings from single myocytes revealed that Ang II activated DAG-sensitive TRPC-like currents. Among DAG-activating TRPC channels (TRPC3, TRPC6, and TRPC7), the activities of TRPC3 and TRPC6 channels correlated with Ang II-induced NFAT activation and hypertrophic responses. These data suggest that DAG-induced Ca(2+) signaling pathway through TRPC3 and TRPC6 is essential for Ang II-induced NFAT activation and cardiac hypertrophy.
Collapse
Affiliation(s)
- Naoya Onohara
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
| | - Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Hiroyuki Kobayashi
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoji Sato
- National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Taku Nagao
- National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Tel./Fax: +81 92 642 6884; E-mail:
| |
Collapse
|
45
|
Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G. Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox Res 2006; 10:43-56. [PMID: 17000469 DOI: 10.1007/bf03033333] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heterotrimeric guanine nucleotide-binding (G) protein-coupled receptor kinases (GRKs) are cytosolic proteins that are known to contribute to the adaptation of the heptahelical G protein-coupled receptors (GPCRs) and to regulate downstream signals through these receptors. GPCRs mediate the action of messengers that are key modulators of cardiac and vascular cell function, such as growth and differentiation. GRKs are members of a multigene family, which are classified into three subfamilies and are found in cardiac, vascular and cerebral tissues. Increasing evidence strongly supports the hypothesis that vascular damage is an early contributor to the development of Alzheimer disease (AD) and/or other pathology that can mimic human AD. Based on this hypothesis, and since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium and elsewhere, we explored cellular and subcellular localization by immunoreactivity of G protein-coupled receptor kinase 2 (GRK2), also known as beta-adrenergic receptor kinase-1(betaARK1), in the early pathogenesis of AD and in ischemia reperfusion injury models of brain hypoperfusion. In the present study, we used the two-vessel carotid artery occlusion model, namely the 2-VO system that results in chronic brain hypoperfusion (CBH) and mimics mild cognitive impairment (MCI) and vascular changes in AD pathology. Our findings demonstrate the early overexpression of GRK2 member kinase in the cerebrovasculature, especially endothelial cells (EC) following CBH, as well as in select cells from human AD tissue. We found a significant increase in GRK2 immunoreactivity in the EC of AD patients and after CBH, which preceded any amyloid deposition. Since GRK2 activity is associated with certain compensatory changes in brain cellular compartments and in ischemic cardiac tissue, our findings suggest that chronic hypoperfusion initiates oxidative stress in these conditions and appears to be the main initiating injury stimulus for disruption of brain and cerebrovascular homeostasis and metabolism.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Honma S, Saika M, Ohkubo S, Kurose H, Nakahata N. Thromboxane A2 receptor-mediated G12/13-dependent glial morphological change. Eur J Pharmacol 2006; 545:100-8. [PMID: 16876780 DOI: 10.1016/j.ejphar.2006.06.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 11/30/2022]
Abstract
Glial cells express thromboxane A(2) receptor, but its physiological role remains unknown. The present study was performed to examine thromboxane A(2) receptor-mediated morphological change in 1321N1 human astrocytoma cells. Thromboxane A(2) receptor agonists U46619 and STA(2) caused a rapid morphological change to spindle shape from stellate form of the cells pretreated with dibutyryl cyclic AMP, but neither carbachol nor histamine caused the change, suggesting that G(q) pathway may not mainly contribute to the change. Rho kinase inhibitor Y-27632 inhibited U46619-induced morphological change, and U46619 increased the GTP-bound form of RhoA accompanied with actin stress fiber formation. These responses were reduced by expression of p115-RGS that inhibits G(12)/(13) signaling pathway. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK) and [(3)H]thymidine incorporation mainly through G(12)/(13)-Rho pathway. These results suggest that stimulation of thromboxane A(2) receptor causes the morphological change with proliferation mainly through G(12)/(13) activation in glial cells.
Collapse
Affiliation(s)
- Shigeyoshi Honma
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
47
|
Zheng R, Iwase A, Shen R, Goodman OB, Sugimoto N, Takuwa Y, Lerner DJ, Nanus DM. Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. Oncogene 2006; 25:5942-52. [PMID: 16652149 DOI: 10.1038/sj.onc.1209586] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neuropeptides bombesin and endothelin-1 stimulate prostate cancer (PC) cell migration and invasion (J Clin Invest, 2000; 106: 1399-1407). The intracellular signaling pathways that direct this cell movement are not well delineated. The monomeric GTPase RhoA is required for migration in several cell types including neutrophils, monocytes and fibroblasts. We demonstrate that bombesin-stimulated PC cell migration occurs via the heterotrimeric G-protein-coupled receptors (G-protein) G alpha 13 subunit leading to activation of RhoA, and Rho-associated coiled-coil forming protein kinase (ROCK). Using siRNA to suppress expression of the three known G-protein alpha-subunit-associated RhoA guanine nucleotide exchange factors (GEFs), we also show that two of these RhoA GEFs, PDZ-RhoGEF and leukemia-associated RhoGEF (LARG), link bombesin receptors to RhoA in a non-redundant manner in PC cells. We next show that focal adhesion kinase, which activates PDZ-RhoGEF and LARG, is required for bombesin-stimulated RhoA activation. Neutral endopeptidase (NEP) is expressed on normal prostate epithelium whereas loss of NEP expression contributes to PC progression. We also demonstrate that NEP inhibits neuropeptide activation of RhoA. Together, these results establish a contiguous signaling pathway from the bombesin receptor to ROCK in PC cells, and they implicate NEP as a major regulator of neuropeptide-stimulated RhoA in these cells. This work also identifies members of this signaling pathway as potential targets for rational pharmacologic manipulation of neuropeptide-stimulated migration of PC cells.
Collapse
Affiliation(s)
- R Zheng
- Department of Urology, Urologic Oncology Research Laboratory, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Koike D, Obinata H, Yamamoto A, Takeda S, Komori H, Nara F, Izumi T, Haga T. 5-Oxo-Eicosatetraenoic Acid-Induced Chemotaxis: Identification of a Responsible Receptor hGPCR48 and Negative Regulation by G Protein G12/13. ACTA ACUST UNITED AC 2006; 139:543-9. [PMID: 16567419 DOI: 10.1093/jb/mvj060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
While screening genes encoding G protein-coupled receptors (GPCRs) in the human genome, we and other groups have identified a GPCR named hGPCR48 as a high affinity receptor for 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is arachidonic acid metabolite and an endogenous chemoattractant for granulocytes. Using Chinese hamster ovary (CHO) cells stably expressing hGPCR48, we show here that activation of the receptor causes the chemotaxis of the cells toward 5-oxo-ETE. We also show that the chemotaxis of human granulocytes toward 5-oxo-ETE is inhibited by pretreatment with anti-hGPCR48 antibodies, indicating that hGPCR48 is an endogenous receptor responsible for chemotaxis of granulocytes toward 5-oxo-ETE. In addition, we show that the chemotaxis of CHO cells expressing hGPCR48 is suppressed by pretreatment with pertussis toxin, and enhanced by overexpression of the carboxy terminal peptides of Galpha (12/13) subunits or a regulator of the G protein signaling domain of p115RhoGEF, both of which are known to suppress G(12/13)-dependent signaling pathways. These results indicate that hGPCR48 couples with G(i/o) and G(12/13) proteins, which then initiate or attenuate the chemotaxis of the cells toward 5-oxo-ETE, respectively.
Collapse
Affiliation(s)
- Daigo Koike
- Department of Nano-Material Systems, Gunma University Graduate School of Engineering, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yahiaoui L, Villeneuve A, Valderrama-Carvajal H, Burke F, Fixman ED. Endothelin-1 regulates proliferative responses, both alone and synergistically with PDGF, in rat tracheal smooth muscle cells. Cell Physiol Biochem 2006; 17:37-46. [PMID: 16543720 DOI: 10.1159/000091462] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The peptide, endothelin-1 (ET-1) regulates proliferative responses in numerous cell types. Recently, a dual ET receptor antagonist was shown to prevent the increase in airway smooth muscle cell (SMC) proliferation that accompanies airway smooth muscle remodeling in a rat model of experimental asthma. Thus, we used [(3)H]-thymidine incorporation assays and western immunoblotting to identify signaling pathways that regulate proliferative responses in cultured rat tracheal SMC. Our data indicate that ET-1 activation of the ET A receptor subtype induced [(3)H]-thymidine incorporation and activation of ERK 1/2 in primary rat tracheal SMC. ET-1-induced [(3)H]-thymidine incorporation and activation of ERK 1/2 were inhibited by pretreatment of SMC with pertussis toxin or down regulation of phorbol ester responsive isoforms of PKC. While ET- 1-induced ERK 1/2 activation was unaffected following inhibition of Rho kinase, ET-1-induced [(3)H]-thymidine incorporation was abrogated. ET-1 also potentiated [(3)H]-thymidine incorporation as well as cell proliferation of SMC stimulated with PDGF-BB and this response did not appear to be regulated by ERK1/ 2. These data demonstrate that ET-1 induces activation of multiple G proteins that regulate rat tracheal SMC proliferative responses, likely through signaling pathways downstream of ERK1/2 and Rho kinase.
Collapse
Affiliation(s)
- Linda Yahiaoui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, St. Urbain, Montreal, Quebec
| | | | | | | | | |
Collapse
|
50
|
Miyosawa K, Sasaki M, Ohkubo S, Nakahata N. Different Pathways for Activation of Extracellular Signal-Regulated Kinase through Thromboxane A2 Receptor Isoforms. Biol Pharm Bull 2006; 29:719-24. [PMID: 16595906 DOI: 10.1248/bpb.29.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thromboxane A2 receptor (TP) consists of two alternatively spliced isoforms, TPalpha and TPbeta, which differ in their cytoplasmic tails. In the present study, we examined the difference in signal transduction of TPalpha and TPbeta, using stably expressing cells of TPalpha and TPbeta. The cells expressing TPalpha (TPalpha-SC2) and TPbeta (TPbeta-SC15) were selected based on the similar binding sites of [3H]-SQ29548, a TP antagonist. U46619, a TP agonist, elicited phosphoinositide hydrolysis in TPalpha-SC2 and TPbeta-SC15 cells with a similar concentration-dependency. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK1/2) in both TPalpha-SC2 and TPbeta-SC15 cells. While the peak of the phosphorylation of ERK1/2 was observed 5 min after addition of U46619 in TPalpha-SC2 cells, the long lasting phosphorylation up to 60 min was in TPbeta-SC15 cells. U46619-induced phosphorylation of ERK1/2 at 5 min was inhibited by pertussis toxin in both cells, suggesting that G(i) is involved in the phosphorylation mediated via both TP isoforms. Interfering G(12/13) activity by overexpression of p115-RGS reduced U46619-induced ERK1/2 phosphorylation in TPbeta-SC15 cells, but not in TPalpha-SC2 cells. H89, an inhibitor of protein kinase A (PKA), reduced U46619-induced ERK1/2 phosphorylation in TPalpha-SC2 cells, but not in TPbeta-SC15 cells. These results indicate that G(i) may be involved in TP-mediated ERK1/2 phosphorylation in both isoforms. In addition, H89-sensitive kinase and G(12/13) may be involved in TP-mediated ERK1/2 phosphorylation in TPalpha and TPbeta, respectively.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenoviridae/genetics
- Animals
- Blotting, Western
- CHO Cells
- Cricetinae
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Genetic Vectors
- Hydrolysis
- Isomerism
- Isoquinolines/pharmacology
- Pertussis Toxin/pharmacology
- Phosphatidylinositols/metabolism
- Plasmids/genetics
- Receptors, Cell Surface/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfonamides/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Katsutoshi Miyosawa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | | | | | | |
Collapse
|