1
|
Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Geng
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| | - Zijuan Wang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Xiaoning Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Zhanshuo Cao
- College of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Chengfen Xing
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
2
|
Mamsa SSA, Meloni BP. Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease. Front Mol Neurosci 2021; 14:759729. [PMID: 34776866 PMCID: PMC8581540 DOI: 10.3389/fnmol.2021.759729] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins. The putative role of proteopathies in chronic neurodegenerative diseases such as Alzheimer's disease (AD) warrants investigation into whether CARPs could also prevent the aggregation and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While monomeric arginine is well-established as an inhibitor of protein aggregation in solution, no studies have comprehensively discussed the anti-aggregatory properties of arginine and CARPs on proteins associated with neurodegenerative disease. Here, we review the structural, physicochemical, and self-associative properties of arginine and the guanidinium moiety, to explore the mechanisms underlying the modulation of protein aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further modulatory roles which could reduce proteopathic cytotoxicity, in the context of therapeutic development for AD.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia
| |
Collapse
|
3
|
Sciacca MF, Di Natale G, Tosto R, Milardi D, Pappalardo G. Tau/Aβ chimera peptides: Evaluating the dual function of metal coordination and membrane interaction in one sequence. J Inorg Biochem 2020; 205:110996. [DOI: 10.1016/j.jinorgbio.2020.110996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
4
|
Pansieri J, Ostojić L, Iashchishyn IA, Magzoub M, Wallin C, Wärmländer SK, Gräslund A, Nguyen Ngoc M, Smirnovas V, Svedružić Ž, Morozova-Roche LA. Pro-Inflammatory S100A9 Protein Aggregation Promoted by NCAM1 Peptide Constructs. ACS Chem Biol 2019; 14:1410-1417. [PMID: 31194501 DOI: 10.1021/acschembio.9b00394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloid cascade and neuroinflammation are hallmarks of neurodegenerative diseases, and pro-inflammatory S100A9 protein is central to both of them. Here, we have shown that NCAM1 peptide constructs carrying polycationic sequences derived from Aβ peptide (KKLVFF) and PrP protein (KKRPKP) significantly promote the S100A9 amyloid self-assembly in a concentration-dependent manner by making transient interactions with individual S100A9 molecules, perturbing its native structure and acting as catalysts. Since the individual molecule misfolding is a rate-limiting step in S100A9 amyloid aggregation, the effects of the NCAM1 construct on the native S100A9 are so critical for its amyloid self-assembly. S100A9 rapid self-assembly into large aggregated clumps may prevent its amyloid tissue propagation, and by modulating S100A9 aggregation as a part of the amyloid cascade, the whole process may be effectively tuned.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mazin Magzoub
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Mai Nguyen Ngoc
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Željko Svedružić
- Department of Biomedical Technology, University of Rijeka, HR 51000, Rijeka, Croatia
| | | |
Collapse
|
5
|
Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, Morfin JF, Toth E, Saraiva MJ, Allémann E, Tillement O, Forge V, Lux F, Marquette C. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017. [PMID: 28635419 DOI: 10.2217/nnm-2017-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. MATERIALS & METHODS The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. RESULTS Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with KD values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. CONCLUSION Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Marie Plissonneau
- Nano-H S.A.S, 38070 Saint Quentin Fallavier, France.,Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Nathalie Stransky-Heilkron
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Mireille Dumoulin
- Laboratory of Enzymology & Protein Folding, Centre for Protein Engineering, InBioS, University of Liege Sart Tilman, 4000 Liege, Belgium
| | - Laurence Heinrich-Balard
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Pascaline Rivory
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Eva Toth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Maria Joao Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Molecular Neurobiology Group, IBMC - Institute for Molecular & Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Olivier Tillement
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - François Lux
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Christel Marquette
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Turner JP, Chastain SE, Park D, Moss MA, Servoss SL. Modulating amyloid-β aggregation: The effects of peptoid side chain placement and chirality. Bioorg Med Chem 2016; 25:20-26. [PMID: 27776890 DOI: 10.1016/j.bmc.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by the buildup of insoluble aggregated amyloid-β protein (Aβ) into plaques that accumulate between the neural cells in the brain. AD is the sixth leading cause of death in the United States and is the only cause of death among the top ten that cannot currently be treated or cured (Alzheimer's Association, 2011; Selkoe, 1996). Researchers have focused on developing small molecules and peptides to prevent Aβ aggregation; however, while some compounds appear promising in vitro, the research has not resulted in a viable therapeutic treatment. We previously reported a peptoid-based mimic (JPT1) of the peptide KLVFF (residues 16-20 of Aβ) that modulates Aβ40 aggregation, specifically reducing the total number of fibrillar, β-sheet structured aggregates formed. In this study, we investigate two new variants of JPT1 that probe the importance of aromatic side chain placement (JPT1s) and side chain chirality (JPT1a). Both JPT1s and JPT1a modulate Aβ40 aggregation by reducing total β-sheet aggregates. However, JPT1a also has a pronounced effect on the morphology of fibrillar Aβ40 aggregates. These results suggest that Aβ40 aggregation may follow a different pathway in the presence of peptoids with different secondary structures. A better understanding of the interactions between peptoids and Aβ will allow for improved design of AD treatments.
Collapse
Affiliation(s)
- J Phillip Turner
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Shelby E Chastain
- Biomedical Engineering Program, University of South Carolina, 1B33 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Dongwon Park
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Melissa A Moss
- Biomedical Engineering Program, University of South Carolina, 1B33 Swearingen Engineering Center, Columbia, SC 29208, USA; Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Shannon L Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA.
| |
Collapse
|
7
|
Haupt C, Fändrich M. Biotechnologically engineered protein binders for applications in amyloid diseases. Trends Biotechnol 2014; 32:513-20. [DOI: 10.1016/j.tibtech.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
|
8
|
Turner JP, Lutz-Rechtin T, Moore KA, Rogers L, Bhave O, Moss MA, Servoss SL. Rationally designed peptoids modulate aggregation of amyloid-beta 40. ACS Chem Neurosci 2014; 5:552-8. [PMID: 24689364 DOI: 10.1021/cn400221u] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the sixth leading cause of death in the United States. Plaques composed of aggregated amyloid-beta protein (Aβ) accumulate between the neural cells in the brain and are associated with dementia and cellular death. Many strategies have been investigated to prevent Aβ self-assembly into disease-associated β-sheet amyloid aggregates; however, a promising therapeutic has not yet been identified. In this study, a peptoid-based mimic of the peptide KLVFF (residues 16-20 of Aβ) was tested for its ability to modulate Aβ aggregation. Peptoid JPT1 includes chiral, aromatic side chains to induce formation of a stable helical secondary structure that allows for greater interaction between the aromatic side chains and the cross β-sheet of Aβ. JPT1 was found to modulate Aβ40 aggregation, specifically decreasing lag time to β-sheet aggregate formation as well as the total number of fibrillar, β-sheet structured aggregates formed. These results suggest that peptoids may be able to limit the formation of Aβ aggregates that are associated with AD.
Collapse
Affiliation(s)
- J. Phillip Turner
- Department of Chemical Engineering, University of Arkansas, 3202 Bell
Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Tammy Lutz-Rechtin
- Department of Chemical Engineering, University of Arkansas, 3202 Bell
Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Kelly A. Moore
- Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, South Carolina 29208, United States
| | - Lauren Rogers
- Department of Chemical Engineering, University of Arkansas, 3202 Bell
Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Omkar Bhave
- Department of Chemical Engineering, University of Arkansas, 3202 Bell
Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Melissa A. Moss
- Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, South Carolina 29208, United States
| | - Shannon L. Servoss
- Department of Chemical Engineering, University of Arkansas, 3202 Bell
Engineering Center, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
9
|
Kumaraswamy P, Sethuraman S, Krishnan UM. Development of a dual nanocarrier system as a potential stratagem against amyloid-induced toxicity. Expert Opin Drug Deliv 2014; 11:1131-47. [PMID: 24811582 DOI: 10.1517/17425247.2014.912211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Therapeutic formulation to reduce amyloid beta (Aβ) insult in neuronal cells remains an important focus in the treatment of Alzheimer's disease. To combat the multifactorial threats that arise during amyloid plaque formation, multi-dimensional approach is required. METHODS Peptide sequence KLVFF derived from the core recognition motif of Aβ1 - 42 can bind to the plaques and help to reduce further accumulation. In our previous work, we have reported various self-assembling structures of KLVFF along with its surface tension lowering ability to overcome the cytotoxicity caused by Aβ1 - 42. In the present work, we have developed a novel combination of peptide-curcumin-loaded liposomal formulation and characterized for its morphology, protein adsorption and colloidal stability. The therapeutic efficacy of the formulation was tested using a cholinergic neuronal cell line pre-treated with Aβ1 - 42. RESULTS The physiochemical characterization and in vitro efficacy of peptide-curcumin-loaded liposomal formulation were found to outperform well in bringing down the amyloid toxicity. CONCLUSION This cumulative evidence indicates that the nanocarrier-based alternative treatment stratagem is an effective way to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Priyadharshini Kumaraswamy
- SASTRA University, School of Chemical and Biotechnology (SCBT), Centre for Nanotechnology and Advanced Biomaterials (CeNTAB) , Thanjavur - 613 401, Tamil Nadu , India
| | | | | |
Collapse
|
10
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Powell LR, Dukes KD, Lammi RK. Probing the efficacy of peptide-based inhibitors against acid- and zinc-promoted oligomerization of amyloid-β peptide via single-oligomer spectroscopy. Biophys Chem 2012; 160:12-9. [PMID: 21945664 PMCID: PMC3210411 DOI: 10.1016/j.bpc.2011.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/18/2023]
Abstract
One avenue for prevention and treatment of Alzheimer's disease involves inhibiting the aggregation of amyloid-β peptide (Aβ). Given the deleterious effects reported for Aβ dimers and trimers, it is important to investigate inhibition of the earliest association steps. We have employed quantized photobleaching of dye-labeled Aβ peptides to characterize four peptide-based inhibitors of fibrillogenesis and/or cytotoxicity, assessing their ability to inhibit association in the smallest oligomers (n=2-5). Inhibitors were tested at acidic pH and in the presence of zinc, conditions that may promote oligomerization in vivo. Distributions of peptide species were constructed by examining dozens of surface-tethered monomers and oligomers, one at a time. Results show that all four inhibitors shift the distribution of Aβ species toward monomers; however, efficacies vary for each compound and sample environment. Collectively, these studies highlight promising design strategies for future oligomerization inhibitors, affording insight into oligomer structures and inhibition mechanisms in two physiologically significant environments.
Collapse
Affiliation(s)
- Lyndsey R Powell
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
| | | | | |
Collapse
|
12
|
Hawkes CA, Deng LH, Shaw JE, Nitz M, McLaurin J. Small molecule beta-amyloid inhibitors that stabilize protofibrillar structures in vitro improve cognition and pathology in a mouse model of Alzheimer's disease. Eur J Neurosci 2010; 31:203-13. [PMID: 20074226 DOI: 10.1111/j.1460-9568.2009.07052.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Beta-amyloid (Abeta) peptides are thought to play a major role in the pathogenesis of Alzheimer's disease. Compounds that disrupt the kinetic pathways of Abeta aggregation may be useful in elucidating the role of oligomeric, protofibrillar and fibrillar Abeta in the etiology of the disease. We have previously reported that scyllo-inositol inhibits Abeta(42) fibril formation but the mechanism(s) by which this occurs has not been investigated in detail. Using a series of scyllo-inositol derivatives in which one or two hydroxyl groups were replaced with hydrogen, chlorine or methoxy substituents, we examined the role of hydrogen bonding and hydrophobicity in the structure-function relationship of scyllo-inositol-Abeta binding. We report here that all scyllo-inositol derivatives demonstrated reduced effectiveness in preventing Abeta(42) fibrillization compared with scyllo-inositol, suggesting that scyllo-inositol interacts with Abeta(42) via key hydrogen bonds that are formed by all hydroxyl groups. Increasing the hydrophobicity of scyllo-inositol by the addition of two methoxy groups (1,4-di-O-methyl-scyllo-inositol) produced a derivative that stabilized Abeta(42) protofibrils in vitro. Prophylactic administration of 1,4-di-O-methyl-scyllo-inositol to TgCRND8 mice attenuated spatial memory impairments and significantly decreased cerebral amyloid pathology. These results suggest that Abeta aggregation can be targeted at multiple points along the kinetic pathway for the improvement of Alzheimer's disease-like pathology.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
13
|
Rangachari V, Davey ZS, Healy B, Moore BD, Sonoda LK, Cusack B, Maharvi GM, Fauq AH, Rosenberry TL. Rationally designed dehydroalanine (ΔAla)-containing peptides inhibit amyloid-β (Aβ) peptide aggregation. Biopolymers 2009; 91:456-65. [DOI: 10.1002/bip.21151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Vestergaard M, Hamada T, Saito M, Yajima Y, Kudou M, Tamiya E, Takagi M. Detection of Alzheimer's amyloid beta aggregation by capturing molecular trails of individual assemblies. Biochem Biophys Res Commun 2008; 377:725-728. [PMID: 18950604 DOI: 10.1016/j.bbrc.2008.10.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 11/16/2022]
Abstract
Assembly of Amyloid beta (Abeta) peptides, in particular Abeta-42 is central to the formation of the amyloid plaques associated with neuro-pathologies such as Alzheimer's disease (AD). Molecular assembly of individual Abeta-42 species was observed using a simple fluorescence microscope. From the molecular movements (aka Brownian motion) of the individual peptide assemblies, we calculated a temporal evolution of the hydrodynamic radius (R(H)) of the peptide at physiological temperature and pH. The results clearly show a direct relationship between R(H) of Abeta-42 and incubation period, corresponding to the previously reported peptide's aggregation kinetics. The data correlates highly with in solution-based label-free electrochemical detection of the peptide's aggregation, and Abeta-42 deposited on a solid surface and analysed using atomic force microscopy (AFM). To the best of our knowledge, this is the first analysis and characterisation of Abeta aggregation based on capturing molecular trails of individual assemblies. The technique enables both real-time observation and a semi-quantitative distribution profile of the various stages of Abeta assembly, at microM peptide concentration. Our method is a promising candidate for real-time observation and analysis of the effect of other pathologically-relevant molecules such as metal ions on pathways to Abeta oligomerisation and aggregation. The method is also a promising screening tool for AD therapeutics that target Abeta assembly.
Collapse
Affiliation(s)
- Mun'delanji Vestergaard
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Yoshifumi Yajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Monotori Kudou
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Eiichi Tamiya
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| |
Collapse
|
15
|
Takahashi T, Mihara H. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation. Acc Chem Res 2008; 41:1309-18. [PMID: 18937396 DOI: 10.1021/ar8000475] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein misfolding is related to some fatal diseases including Alzheimer's disease (AD). Amyloid beta-peptide (Abeta) generated from amyloid precursor protein can aggregate into amyloid fibrils, which are known to be a major component of Abeta deposits (senile plaques). The fibril formation of Abeta is typical of a nucleation-dependent process through self-recognition. Moreover, during fibrillization, several metastable intermediates such as soluble oligomers, including Abeta-derived diffusible ligands (ADDLs) and Abeta*56, are produced, which are thought to be the most toxic species to neuronal cells. Therefore, construction of molecules that decrease the Abeta aggregates, including soluble oligomers, protofibrils, and amyloid fibrils, might further our understanding of the mechanism(s) behind fibril formation and enable targeted drug discovery against AD. To this aim, various peptides and peptide derivatives have been constructed using the "Abeta binding element" based on the structural models of Abeta amyloid fibrils and the mechanisms of self-assembly. The central hydrophobic amino acid sequence, LVFF, of Abeta is a key sequence to self-assemble into amyloid fibrils. By combination of this core sequence with a hydrophobic or hydrophilic moiety, such as cholic acid or aminoethoxy ethoxy acetic acid units, respectively, good inhibitors of Abeta aggregation can be designed and synthesized. A peptide, LF, consisting of the sequence Ac-KQKLLLFLEE-NH 2, was designed based on the core sequence of Abeta but with a simplified amino acid sequence. The LF peptide can form amyloid-like fibrils that efficiently coassemble with mature Abeta1-42 fibrils. The LF peptide was also observed to immediately transform the soluble oligomers of Abeta1-42, which are thought to pose toxicity in AD, into amyloid-like fibrils. On the other hand, two Abeta-like beta-strands with a parallel orientation were embedded in green fluorescent protein (GFP), comprised of a beta-barrel structure, to make pseudo-Abeta beta-sheets on its surface. The GFP variant P13H binds to Abeta1-42 and inhibits Abeta1-42 oligomerization effectively in a substoichiometric condition. Thus, molecules capable of binding to Abeta can be designed based on structural similarities with the Abeta molecule. The peptide and protein mimetics based on the structural features of Abeta might lead to the development of drug candidates against AD.
Collapse
Affiliation(s)
- Tsuyoshi Takahashi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta,Yokohama 226-8501, Japan
| | - Hisakazu Mihara
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta,Yokohama 226-8501, Japan
| |
Collapse
|
16
|
Hetényi A, Fülöp L, Martinek TA, Wéber E, Soós K, Penke B. Ligand-Induced Flocculation of Neurotoxic Fibrillar Aβ(1–42) by Noncovalent Crosslinking. Chembiochem 2008; 9:748-57. [DOI: 10.1002/cbic.200700351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Gonzalez-Velasquez FJ, Moss MA. Soluble aggregates of the amyloid-beta protein activate endothelial monolayers for adhesion and subsequent transmigration of monocyte cells. J Neurochem 2007; 104:500-13. [PMID: 17953673 DOI: 10.1111/j.1471-4159.2007.04988.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that the deposition of amyloid plaques, composed primarily of the amyloid-beta protein (Abeta), within the cerebrovasculature is a frequent occurrence in Alzheimer's disease and may play a significant role in disease progression. Accordingly, the pathogenic mechanisms by which Abeta can alter vascular function may have therapeutic implications. Despite observations that Abeta elicits a number of physiological responses in endothelial cells, ranging from alteration of protein expression to cell death, the Abeta species accountable for these responses remains unexplored. In the current study, we show that isolated soluble Abeta aggregation intermediates activate human brain microvascular endothelial cells for both adhesion and subsequent transmigration of monocyte cells in the absence of endothelial cell death and monolayer disruption. In contrast, unaggregated Abeta monomer and mature Abeta fibril fail to induce any change in endothelial adhesion or transmigration. Correlations between average Abeta aggregate size and observed increases in adhesion illustrate that smaller soluble aggregates are more potent activators of endothelium. These results support previous studies demonstrating heightened neuronal activity of soluble Abeta aggregates, including Abeta-derived diffusible ligands, oligomers, and protofibrils, and further show that soluble aggregates also selectively exhibit activity in a vascular cell model.
Collapse
Affiliation(s)
- Francisco J Gonzalez-Velasquez
- Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
18
|
Abstract
This review considers the design, synthesis, and mechanistic assessment of peptide-based fibrillogenesis inhibitors, mainly focusing on beta-amyloid, but generalizable to other aggregating proteins and peptides. In spite of revision of the "amyloid hypothesis," the investigation and development of fibrillogenesis inhibitors remain important scientific and therapeutic goals for at least three reasons. First, it is still premature to dismiss fibrils altogether as sources of cytotoxicity. Second, a "fibrillogenesis inhibitor" is typically identified experimentally as such, but these compounds may also bind to intermediates in the fibrillogenesis pathway and have hard-to-predict consequences, including improved clearance of more cytotoxic soluble oligomers. Third, inhibitors are valuable structural probes, as the entire field of enzymology attests. Screening procedures for selection of random inhibitory sequences are briefly considered, but the bulk of the review concentrates on rationally designed fibrillogenesis inhibitors. Among these are internal segments of fibril-forming peptides, amino acid substitutions and side chain modifications of fibrillogenic domains, insertion of prolines into or adjacent to fibrillogenic domains, modification of peptide termini, modification of peptide backbone atoms (including N-methylation), peptide cyclization, use of D-amino acids in fibrillogenic domains, and nonpeptidic beta-sheet mimics. Finally, we consider methods of assaying fibrillogenesis inhibitors, including pitfalls in these assays. We consider binding of inhibitor peptides to their targets, but because this is a specific application of the more general and much larger problem of assessing protein-protein interactions, this topic is covered only briefly. Finally, we consider potential applications of inhibitor peptides to therapeutic strategies.
Collapse
|
19
|
Kim JR, Murphy RM. Mechanism of accelerated assembly of beta-amyloid filaments into fibrils by KLVFFK(6). Biophys J 2004; 86:3194-203. [PMID: 15111432 PMCID: PMC1304184 DOI: 10.1016/s0006-3495(04)74367-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular senile plaques are a central pathological feature of Alzheimer's disease. At the core of these plaques are fibrillar deposits of beta-amyloid peptide (Abeta). In vitro, Abeta spontaneously assembles into amyloid fibrils of cross-beta sheet structure. Although it was once believed that the fibrils themselves were toxic, more recent data supports the hypothesis that aggregation intermediates, rather than fully formed fibrils, are the most damaging to neuronal tissue. In previously published work, we identified several small peptides that interact with Abeta and increase its aggregation rate while decreasing its toxicity. In this work, we examined in detail the interaction between Abeta and one of these peptides. Using a mathematical model of Abeta aggregation kinetics, we show that the dominant effect of the peptide is to accelerate lateral association of Abeta filaments into fibrils.
Collapse
Affiliation(s)
- Jin Ryoun Kim
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|