1
|
Joshi S, Singh A, Kukreti S. Porphyrin induced structural destabilization of a parallel DNA G-quadruplex in human MRP1 gene promoter. J Mol Recognit 2022; 35:e2950. [PMID: 34990028 DOI: 10.1002/jmr.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Porphyrins are among the first ligands that have been tested for their quadruplex binding and stabilization potential. We report the differential interaction of the positional cationic porphyrin isomers TMPyP3 and TMPyP4 with a parallel G-quadruplex (GQ) formed by 33-mer (TP) regulatory sequence present in the promoter region of the human multidrug resistance protein 1 (MRP1) transporter gene. This GQ element encompasses the three evolutionary conserved SP1 transcription factor binding sites. Taking into account that SP1 binds to a non-canonical GQ motif with higher affinity than to a canonical duplex DNA consensus motif, it is suggestive that GQ distortion by cationic porphyrin will have important implications in the regulation of MRP1 expression. Herein, we employed biophysical analysis using circular dichroism, visible absorption, UV-thermal melting and steady-state fluorescence spectroscopy, reporting destabilization of MRP1 GQ by cationic porphyrins. Results suggest that TMPyP4 and TMPyP3 interact with GQ with a binding affinity of 106 to 107 M-1 . Thermodynamic analysis indicated a significant decrease in melting temperature of GQ (ΔTm of 15.5°C-23.5°C), in the presence of 2 times excess of porphyrins. This study provides the biophysical evidence indicating the destabilisation of a parallel DNA G-quadruplex by cationic porphyrins.
Collapse
Affiliation(s)
- Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
2
|
Krohn M, Zoufal V, Mairinger S, Wanek T, Paarmann K, Brüning T, Eiriz I, Brackhan M, Langer O, Pahnke J. Generation and Characterization of an Abcc1 Humanized Mouse Model ( hABCC1flx/flx ) with Knockout Capability. Mol Pharmacol 2019; 96:138-147. [PMID: 31189668 DOI: 10.1124/mol.119.115824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 01/18/2023] Open
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) are well known for their role in rendering cancer cells resistant to chemotherapy. Additionally, recent research provided evidence that, along with other ABC transporters (ABCA1 and ABCA7), they might be cornerstones to tackle neurodegenerative diseases. Overcoming chemoresistance in cancer, understanding drug-drug interactions, and developing efficient and specific drugs that alter ABC transporter function are hindered by a lack of in vivo research models, which are fully predictive for humans. Hence, the humanization of ABC transporters in mice has become a major focus in pharmaceutical and neurodegenerative research. Here, we present a characterization of the first Abcc1 humanized mouse line. To preserve endogenous expression profiles, we chose to generate a knockin mouse model that leads to the expression of a chimeric protein that is fully human except for one amino acid. We found robust mRNA and protein expression within all major organs analyzed (brain, lung, spleen, and kidney). Furthermore, we demonstrate the functionality of the expressed human ABCC1 protein in brain and lungs using functional positron emission tomography imaging in vivo. Through the introduction of loxP sites, we additionally enabled this humanized mouse model for highly sophisticated studies involving cell type-specific transporter ablation. Based on our data, the presented mouse model appears to be a promising tool for the investigation of cell-specific ABCC1 function. It can provide a new basis for better translation of preclinical research.
Collapse
Affiliation(s)
- Markus Krohn
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Viktoria Zoufal
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Severin Mairinger
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Wanek
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Kristin Paarmann
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Brüning
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Ivan Eiriz
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Mirjam Brackhan
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Oliver Langer
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Jens Pahnke
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| |
Collapse
|
3
|
Lv Y, Zhao S, Han J, Zheng L, Yang Z, Zhao L. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer. Onco Targets Ther 2015; 8:1941-8. [PMID: 26251616 PMCID: PMC4524588 DOI: 10.2147/ott.s82835] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF)-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1) were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at −378 to −373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well.
Collapse
Affiliation(s)
- Yingqian Lv
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Shan Zhao
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jinzhu Han
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Likang Zheng
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zixin Yang
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Li Zhao
- Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
4
|
El Azreq MA, Naci D, Aoudjit F. Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner. Mol Biol Cell 2012; 23:3473-84. [PMID: 22787275 PMCID: PMC3431945 DOI: 10.1091/mbc.e12-02-0132] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Collagen/β1 integrin/extracellular signal-regulated kinase signaling up-regulates the expression and function of ABCC1 transporter. This suggests that its activation could represent an important pathway in cancer chemoresistance. The mechanisms by which β1 integrins regulate chemoresistance of cancer cells are still poorly understood. In this study, we report that collagen/β1 integrin signaling inhibits doxorubicin-induced apoptosis of Jurkat and HSB2 leukemic T-cells by up-regulating the expression and function of the ATP-binding cassette C 1 (ABCC1) transporter, also known as multidrug resistance–associated protein 1. We find that collagen but not fibronectin reduces intracellular doxorubicin content and up-regulates the expression levels of ABCC1. Inhibition and knockdown studies show that up-regulation of ABCC1 is necessary for collagen-mediated reduction of intracellular doxorubicin content and collagen-mediated inhibition of doxorubicin-induced apoptosis. We also demonstrate that activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signaling pathway is involved in collagen-induced reduction of intracellular doxorubicin accumulation, collagen-induced up-regulation of ABCC1 expression levels, and collagen-mediated cell survival. Finally, collagen-mediated up-regulation of ABCC1 expression and function also requires actin polymerization. Taken together, our results indicate for the first time that collagen/β1 integrin/ERK signaling up-regulates the expression and function of ABCC1 and suggest that its activation could represent an important pathway in cancer chemoresistance. Thus simultaneous targeting of collagen/β1 integrin and ABCC1 may be more efficient in preventing drug resistance than targeting each pathway alone.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
5
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
6
|
Wang W, Sun YP, Huang XZ, He M, Chen YY, Shi GY, Li H, Yi J, Wang J. Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochem Pharmacol 2010; 79:1134-1140. [PMID: 20005210 DOI: 10.1016/j.bcp.2009.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 02/05/2023]
Abstract
Glutathione conjugation and transportation of glutathione conjugates of anticancer drugs out of cells are important for detoxification of many anticancer drugs. Inhibition of this detoxification system has recently been proposed as a strategy to treat drug-resistant solid tumors. Gallbladder carcinoma is resistant to many anticancer drugs, therefore, it is needed to develop a novel strategy for cancer therapy. In the present study, we tested the effect of emodin (1,3,8-trihydroxy-6-methylanthraquinone), a reactive oxygen species (ROS) generator reported by our group previously, in combination with cisplatin (CDDP), carboplatin (CBP) or oxaliplatin in treating the gallbladder carcinoma cell line SGC996. Our results showed that co-treatment with emodin could remarkably enhance chemosensitivity of SGC996 cells in comparison with cisplatin, carboplatin or oxaliplatin treatment alone. We found that the mechanisms may be attributed to reduction of glutathione level, and downregulation of multidrug resistance-related protein 1 (MRP1) expression in SGC996 cells. The experiments on tumor-bearing mice showed that emodin/cisplatin co-treatment inhibited the tumor growth in vivo via increasing tumor cell apoptosis and downregulating MRP1 expression. In conclusion, emodin can work as an adjunct to enhance the anticancer effect of platinum drugs in gallbladder cancer cells via ROS-related mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ronaldson PT, Ashraf T, Bendayan R. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol 2010; 77:644-59. [PMID: 20051532 DOI: 10.1124/mol.109.059410] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Pharmacotherapy of brain HIV-1 infection may be limited by ABC transporters [i.e., P-glycoprotein (P-gp), multidrug resistance protein 1 (Mrp1)] that export antiretroviral drugs from HIV-1 brain cellular targets (i.e., astrocytes, microglia). Using an in vitro astrocyte model of an HIV-1 associated inflammatory response, our laboratory has shown that cytokines [i.e., tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-6], which are secreted in response to HIV-1 envelope glycoprotein gp120 exposure, can decrease P-gp functional expression; however, it is unknown whether these same cytokines can alter expression and/or activity of other ABC transporters (i.e., Mrp1). In primary cultures of rat astrocytes, Mrp1 expression was increased by TNF-alpha (2.7-fold) but was not altered by IL-1 beta or IL-6. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an Mrp substrate, was reduced in TNF-alpha-treated astrocytes, suggesting increased Mrp-mediated transport. Pharmacologic inhibition of nuclear factor-kappaB (NF-kappaB) signaling with SN50 prevented both TNF-alpha release and Mrp1 expression changes in astrocytes triggered with gp120; however, SN50 did not attenuate Mrp1 expression in cells triggered with TNF-alpha. In contrast, Mrp1 functional expression was not altered in the presence of gp120 or TNF-alpha when astrocyte cultures were pretreated with 1,9-pyrazoloanthrone (SP600125), an established c-Jun N-terminal kinase (JNK) inhibitor. SP600125 did not affect TNF-alpha release from cultured astrocytes triggered with gp120. Mrp1 mRNA expression was increased after treatment with gp120 (1.6-fold) or TNF-alpha (1.7-fold), suggesting altered Mrp1 gene transcription. These data suggest that gp120 and TNF-alpha can up-regulate Mrp1 expression in cultured astrocytes. Furthermore, our results imply that both NF-kappaB and JNK signaling are involved in Mrp1 regulation during an HIV-1 associated inflammatory response.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada
| | | | | |
Collapse
|
8
|
Mahaffey CM, Zhang H, Rinna A, Holland W, Mack PC, Forman HJ. Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radic Biol Med 2009; 46:1650-7. [PMID: 19345732 PMCID: PMC2692873 DOI: 10.1016/j.freeradbiomed.2009.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 12/15/2022]
Abstract
Multidrug-resistant proteins (MRPs) are members of the ATP-binding cassette superfamily that facilitate detoxification by transporting toxic compounds, including chemotherapeutic drugs, out of cells. Chemotherapy, radiation, and other xenobiotic stresses have been shown to increase levels of select MRPs, although the underlying mechanism remains largely unknown. Additionally, MRP3 is suspected of playing a role in the drug resistance of non-small-cell lung carcinoma (NSCLC). Analysis of the MRP3 promoter revealed the presence of multiple putative electrophile-responsive elements (EpREs), sequences that suggest possible regulation of this gene by Nrf2, the key transcription factor that binds to EpRE. The goal of this investigation was to determine whether MRP3 induction was dependent upon the transcription factor Nrf2. Keap1, a key regulator of Nrf2, sequesters Nrf2 in the cytoplasm, preventing entry into the nucleus. The electrophilic lipid peroxidation product 4-hydroxy-2-nonenal (HNE) has been shown to modify Keap1, allowing Nrf2 to enter the nucleus. We found that HNE up-regulated MRP3 mRNA and protein levels in cell lines with wild-type Keap1 (the human bronchial epithelial cell line HBE1 and the NSCLC cell line H358), but not in the Keap1-mutant NSCLC cell lines (A549 and H460). Cell lines with mutant Keap1 had constitutively higher MRP3 that was not increased by HNE treatment. In HBE1 cells, silencing of Nrf2 with siRNA inhibited induction of MRP3 by HNE. Finally, we found that silencing Nrf2 also increased the toxicity of cisplatin in H358 cells. The combined results therefore support the hypothesis that MRP3 induction by HNE involves Nrf2 activation.
Collapse
MESH Headings
- Aldehydes/pharmacology
- Base Sequence
- Bronchi/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cisplatin/pharmacology
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Gene Silencing/drug effects
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Sequence Data
- Multidrug Resistance-Associated Proteins/genetics
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/metabolism
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Tumor Cells, Cultured
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Christopher M Mahaffey
- Department of Natural Sciences, University of California at Merced, Merced, CA 95344, USA
| | | | | | | | | | | |
Collapse
|
9
|
Scatà MC, Napolitano F, Casu S, Carta A, De Matteis G, Signorelli F, Annicchiarico G, Catillo G, Moioli B. Ovine acyl CoA:diacylglycerol acyltransferase 1- molecular characterization, polymorphisms and association with milk traits. Anim Genet 2009; 40:737-42. [PMID: 19466941 DOI: 10.1111/j.1365-2052.2009.01909.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this work was to characterize the complete coding region of the ovine acylCoA:diacylglycerol acyltransferase 1 (DGAT1) gene of three Italian sheep breeds: Sarda, Altamurana and Gentile di Puglia. Characterization was accomplished by direct sequencing of 8676 bp of the relevant DNA, including introns and partial 5' and 3' untranslated regions (UTRs). We detected five novel SNPs; one SNP (g.5553C>T) is located in intron 2, has similar frequencies in the three breeds and showed a negative association with milk fat content. More interesting is an SNP in the 5' UTR (g.127C>A), the occurrence of which is rare in the higher milk-fat breeds (Altamurana and Gentile di Puglia); it is located in the core sequence of Sp1, a putative binding site of transcription factors. This SNP showed a significant negative association with milk fat content in the Sarda sheep. Because DGAT1 plays a fundamental role in triacylglycerol synthesis, the novel detected SNP in the 5' UTR of the DGAT1 gene might explain, at least partially, the variation of fat content in the milk of Sarda sheep.
Collapse
Affiliation(s)
- M C Scatà
- CRA-PCM, via Salaria 31, 00016 Monterotondo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Combination of tenofovir and emtricitabine plus efavirenz: in vitro modulation of ABC transporter and intracellular drug accumulation. Antimicrob Agents Chemother 2008; 53:896-902. [PMID: 19075072 DOI: 10.1128/aac.00733-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Efflux proteins have been shown to greatly affect the uptake of antiretroviral drugs by cells and to hamper their access to the human immunodeficiency virus type 1 replication site. This study evaluated the factors that may lead to drug-drug interactions between emtricitabine (FTC), tenofovir (TFV), and efavirenz (EFV), including the modulation of efflux transporter expression and function. Peripheral blood mononuclear cells from healthy volunteers were used to determine whether or not an interaction between antiretroviral drugs and target cells occurred in any combination of FTC, TFV, EFV, FTC-TFV, TFV-EFV, or FTC-TFV-EFV. Following 20 h of treatment, intracellular drug concentrations were measured by liquid chromatography-tandem mass spectrometry. Efflux transporter functionality and inhibitor drug properties were assessed by measuring fluorescent dye efflux. ABCB1 (P-glycoprotein), ABCC 1 to 6 (multidrug resistance-associated protein), and OAT (organic anion transporter) expression in response to the treatments was quantified by semiquantitative real-time PCR. Cells treated with a double combination (FTC-TFV or TFV-EFV) or the triple combination (FTC-TFV-EFV) produced higher FTC and TFV intracellular concentrations than cells treated with FTC or TFV alone. However, no change in the EFV intracellular concentration was observed. FTC tended to induce abcc5 mRNA expression and EFV tended to induce abcc1 and abcc6 mRNA expression, whereas TFV tended to reduce mdr1, abcc1, abcc5, and abcc6 mRNA expression. Under these conditions, a decrease in the functionality of ABCC was observed, and this decrease was associated with the direct inhibitory actions of these drugs. This in vitro study reveals a benefit of the combination FTC-TFV-EFV in terms of the intracellular FTC and TFV concentrations and highlights the pharmacological mechanisms that lead to this effect.
Collapse
|
11
|
Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38:833-62. [DOI: 10.1080/00498250701883514] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Golalipour M, Mahjoubi F, Sanati MH, Alimoghaddam K, Kamran A. Gene Dosage Is Not Responsible for the Upregulation of MRP1 Gene Expression in Adult Leukemia Patients. Arch Med Res 2007; 38:297-304. [PMID: 17350479 DOI: 10.1016/j.arcmed.2006.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/25/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND Upregulation of multidrug resistance-associated protein (MRP1) gene has been detected in many in vitro systems and could be the basis of the drug resistance phenotype in vivo. Increase in gene dosage and overexpression are two major mechanisms for increasing MRP1 expression level. In many drug resistant cell lines, MRP1 gene amplification has been detected. However, it is not yet known whether gene amplification plays a role in inducing the multidrug resistance phenotype clinically. METHODS To establish whether MRP1 gene copy number is a common feature of the upregulation of MRP1 expression in cancer patients, we studied the MRP1 gene copy number in leukemia patients by fluorescent in situ hybridization (FISH) and real-time PCR. This involved determination of the MRP1 gene copy number and mRNA level in the peripheral blood of 52 adult leukemic patients and ten healthy volunteers. The leukemic CCRF-CEM cell line (drug sensitive) and its drug-resistant subline CCRF-E1000, which has MRP1 overexpression, were used as controls. RESULTS The MRP1 gene copy number in CCRF-CEM was normal but increased significantly in CCRF-E1000 cell line. However, in the presence or absence of MRP1 overexpression, increase in gene dosage was not detected in patients. CONCLUSIONS Our data suggest that the increase in MRP1 gene dosage observed in resistant cell lines is not responsible for the upregulation of MRP1 expression in leukemic patients.
Collapse
Affiliation(s)
- Masoud Golalipour
- Clinical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | |
Collapse
|
13
|
Mansilla S, Rojas M, Bataller M, Priebe W, Portugal J. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells. Biochem Pharmacol 2007; 73:934-42. [PMID: 17217917 DOI: 10.1016/j.bcp.2006.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/05/2006] [Indexed: 11/17/2022]
Abstract
Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.
Collapse
Affiliation(s)
- Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Petit A, Rouleux-Bonnin F, Lambelé M, Pollet N, Bigot Y. Properties of the various Botmar1 transcripts in imagoes of the bumble bee, Bombus terrestris (Hymenoptera: Apidae). Gene 2007; 390:52-66. [PMID: 17088026 DOI: 10.1016/j.gene.2006.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/24/2022]
Abstract
Botmar1 elements are mariner-like elements (MLEs), class II transposable elements that occur in the genome of the bumble bee, Bombus terrestris. Each haploid B. terrestris genome contains about 230 Botmar1, consisting entirely of 1.3-kb and 0.85-kb elements. During their evolution in the B. terrestris genome, two Botmar1 lineages have been differentiated in terms of their nucleic acid sequences and the differences found in their 5' untranslated regions suggest that they could be transcribed differently in B. terrestris. Here, we show that small amounts of Botmar1 mRNA occur in RNA extracts purified from B. terrestris imagoes. This indicates that the Botmar1 transcription is either weak in imagoes, or is restricted to very few cells. The cloning of several mRNAs reveals that only lineage-2 Botmar1 elements are transcribed. This transcription is specific, and uses cardinal initiators and terminators of eukaryotic elements in the Botmar1 elements. The intrastrand stem-loop folds in the mRNA theoretically synthesized by elements of the first lineage suggest that mRNA maintenance in cells might be self-regulated by RNA interference.
Collapse
Affiliation(s)
- Agnès Petit
- Laboratoire d'Etude des Parasites Génétiques, FRE-CNRS 2969, Université François Rabelais, UFR des Sciences et Techniques, Bâtiment L, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | |
Collapse
|
15
|
Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 2006; 25:231-59. [PMID: 16815813 DOI: 10.1080/10915810600746023] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ATP-binding cassette (ABC) transporters constitute a large family of membrane proteins, which transport a variety of compounds through the membrane against a concentration gradient at the cost of ATP hydrolysis. Substrates of the ABC transporters include lipids, bile acids, xenobiotics, and peptides for antigen presentation. As they transport exogenous and endogenous compounds, they reduce the body load of potentially harmful substances. One by-product of such protective function is that they also eliminate various useful drugs from the body, causing drug resistance. This review is a brief summary of the structure, function, and expression of the important drug resistance-conferring members belonging to three subfamilies of the human ABC family; these are ABCB1 (MDR1/P-glycoprotein of subfamily ABCB), subfamily ABCC (MRPs), and ABCG2 (BCRP of subfamily ABCG), which are expressed in various organs. In the text, the transporter symbol that carries the subfamily name (such as ABCB1, ABCC1, etc.) is used interchangeably with the corresponding original names, such as MDR1P-glycoprotein, MRP1, etc., respectively. Both nomenclatures are maintained in the text because both are still used in the transporter literature. This helps readers relate various names that they encounter in the literature. It now appears that P-glycoprotein, MRP1, MRP2, and BCRP can explain the phenomenon of multidrug resistance in all cell lines analyzed thus far. Also discussed are the gene structure, regulation of expression, and various polymorphisms in these genes. Because genetic polymorphism is thought to underlie interindividual differences, including their response to drugs and other xenobiotics, the importance of polymorphism in these genes is also discussed.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Biotechnology and GRAS Notice Review, Office of Food Additive Safety, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA.
| | | |
Collapse
|
16
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 552] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Roy R, Ordovas L, Zaragoza P, Romero A, Moreno C, Altarriba J, Rodellar C. Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim Genet 2006; 37:215-8. [PMID: 16734679 DOI: 10.1111/j.1365-2052.2006.01434.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acid synthase (FASN) is a multifunctional protein that carries out the synthesis of fatty acids so it plays a central role in de novo lipogenesis in mammals. Previously, we defined the genetic structure and expression of the bovine FASN gene. Our mapping studies placed FASN on BTA19 (19q22) where several quantitative trait loci (QTL) affecting milk-fat content and related traits have been described. This study was conducted to identify polymorphisms in the bovine FASN gene and to study their association with milk-fat content. The bovine FASN gene was screened for polymorphisms in two cattle breeds. Sequence analysis revealed several single nucleotide polymorphisms (SNPs), and two of them were analysed: a G>C substitution in the untranslated exon 1 (g.763G>C), altering a potential Sp1 transcription factor-binding site, and an A>G substitution in exon 34 (g.16009A>G), which determines a non-conservative substitution of threonine by alanine. Allele-specific amplification of the SNPs in FASN revealed significant frequency differences for both polymorphisms in Holsteins with high and low breeding values for milk-fat content. The intragenic haplotypes comprising exon 1 (alleles G and C) and exon 34 (alleles A and G) polymorphisms were studied, and the existence of linkage disequilibrium between these SNPs was found (D(CG) = 0.048, P < 0.001). Our results suggest that the FASN gene polymorphisms contribute to variation in milk-fat content. We propose that the bovine FASN gene is a candidate gene for a milk-fat content QTL.
Collapse
Affiliation(s)
- R Roy
- Laboratorio de Genética Bioquímica, Universidad de Zaragoza, Zaragoza 50013, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang Z, Sew PH, Ambrose H, Ryan S, Chong SS, Lee EJD, Lee CGL. Nucleotide sequence analyses of the MRP1 gene in four populations suggest negative selection on its coding region. BMC Genomics 2006; 7:111. [PMID: 16684361 PMCID: PMC1488846 DOI: 10.1186/1471-2164-7-111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/10/2006] [Indexed: 01/02/2023] Open
Abstract
Background The MRP1 gene encodes the 190 kDa multidrug resistance-associated protein 1 (MRP1/ABCC1) and effluxes diverse drugs and xenobiotics. Sequence variations within this gene might account for differences in drug response in different individuals. To facilitate association studies of this gene with diseases and/or drug response, exons and flanking introns of MRP1 were screened for polymorphisms in 142 DNA samples from four different populations. Results Seventy-one polymorphisms, including 60 biallelic single nucleotide polymorphisms (SNPs), ten insertions/deletions (indel) and one short tandem repeat (STR) were identified. Thirty-four of these polymorphisms have not been previously reported. Interestingly, the STR polymorphism at the 5' untranslated region (5'UTR) occurs at high but different frequencies in the different populations. Frequencies of common polymorphisms in our populations were comparable to those of similar populations in HAPMAP or Perlegen. Nucleotide diversity indices indicated that the coding region of MRP1 may have undergone negative selection or recent population expansion. SNPs E10/1299 G>T (R433S) and E16/2012 G>T (G671V) which occur at low frequency in only one or two of four populations examined were predicted to be functionally deleterious and hence are likely to be under negative selection. Conclusion Through in silico approaches, we identified two rare SNPs that are potentially negatively selected. These SNPs may be useful for studies associating this gene with rare events including adverse drug reactions.
Collapse
Affiliation(s)
- Zihua Wang
- Department of Biochemistry, National University of Singapore, Singapore
- Graduate Programme in Bioengineering, National University of Singapore, Singapore
| | - Pui-Hoon Sew
- Division of Medical Sciences, National Cancer Center, Singapore
| | | | | | - Samuel S Chong
- Departments of Pediatrics & Obstetrics/Gynecology, Singapore
- Departments of Pediatrics and Gynecology & Obstetrics, and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edmund JD Lee
- Department of Pharmacology, National University of Singapore, Singapore
| | - Caroline GL Lee
- Department of Biochemistry, National University of Singapore, Singapore
- Division of Medical Sciences, National Cancer Center, Singapore
| |
Collapse
|
19
|
Lee YC, Higashi Y, Luu C, Shimizu C, Strott CA. Sp1 elements inSULT2B1bpromoter and 5′-untranslated region of mRNA: Sp1/Sp2 induction and augmentation by histone deacetylase inhibition. FEBS Lett 2005; 579:3639-45. [PMID: 15953604 DOI: 10.1016/j.febslet.2005.05.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
The steroid/sterol sulfotransferase gene (SULT2B1) encodes for two isozymes of which one (SULT2B1b) sulfonates cholesterol and is selectively expressed in skin. The human SULT2B1 gene contains neither a TATAAA nor a CCAAT motif upstream of the coding region for SULT2B1b; however, this area is GC-rich. Of five Sp1 elements identified two had regulatory activity utilizing immortalized human keratinocytes: one element is located above the ostensible transcription initiation site, whereas the other is located within the 5'-untranslated region of the SULT2B1b mRNA. Sp1 and Sp2 transcription factors identified by supershift analyses induced reporter gene activity, an effect markedly augmented by histone deacetylase inhibition.
Collapse
Affiliation(s)
- Young C Lee
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|