1
|
Mechanism of protection of rat hepatocytes from acetaminophen-induced cellular damage by ethanol extract of Aerva lanata. Interdiscip Toxicol 2020; 12:169-179. [PMID: 32461720 PMCID: PMC7247370 DOI: 10.2478/intox-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/29/2019] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to evaluate the protective effect of ethanol extract of Aerva lanata (EEAL) in preventing acetaminophen induced liver toxicity. EEAL was prepared and its hepatoprotective effect was studied in both isolated primary hepatocytes in vitro and in Sprague Dawley rats in vivo. For in vivo studies, the animals were grouped as Group I – Control; Group II – ACN (2 g/kg b.w.); Group III – EEAL (50 mg/kg b.w.) + ACN (2 g/kg b.w.), Group IV – EEAL (100 mg/kg b.w.) + ACN (2 g/kg b.w.). Extracellular activities of the enzymes liver aminotransferease (GOT, GPT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in isolated hepatocytes and rat plasma were studied colorimetrically. Expression of GST, Nrf2, COX 1 & COX2 genes in rat liver were evaluated by RT-PCR. The results showed that ACN induced down-regulation of Nrf2 and upregulation of GST gene expression, which were modulated by EEAL treatment. GOT, GPT, ALP and LDH levels were found to be lowered in both hepatocyte culture media and plasma following EEAL treatment. In addition, the medium GOT and GPT levels were diminished following EEAL treatment only. Moreover, only ALP and LDH in serum appeared to be at normal level following EEAL treatment, whereas GOT and GPT showed levels lower than control. ACN treatment increased the expression of pro-inflammatory COX 1 and COX 2 genes and the levels of these genes were reduced by EEAL treatment. EEAL pre-treated rats exposed to ACN were found to retain normal hepatic structure compared to ACN alone treated rats. From these results it can be concluded that ethanol extract of A. lanata possesses both anti-inflammatory and hepatoprotective activity.
Collapse
|
2
|
Li Y, Hao B, Muhammad I, Zhang Y, Yang Y, Shi C, Chang Y, Li R, Li C, Liu F. Acetaminophen-induced reduction in glutathione-S-transferase A1 in hepatocytes: A role for hepatic nuclear factor 1α and its response element. Biochem Biophys Res Commun 2019; 516:251-257. [DOI: 10.1016/j.bbrc.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
|
3
|
Grammatikos G, Dietz J, Ferreiros N, Koch A, Dultz G, Bon D, Karakasiliotis I, Lutz T, Knecht G, Gute P, Herrmann E, Zeuzem S, Mavromara P, Sarrazin C, Pfeilschifter J. Persistence of HCV in Acutely-Infected Patients Depletes C24-Ceramide and Upregulates Sphingosine and Sphinganine Serum Levels. Int J Mol Sci 2016; 17:E922. [PMID: 27304952 PMCID: PMC4926455 DOI: 10.3390/ijms17060922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) substantially affects lipid metabolism, and remodeling of sphingolipids appears to be essential for HCV persistence in vitro. The aim of the current study is the evaluation of serum sphingolipid variations during acute HCV infection. We enrolled prospectively 60 consecutive patients with acute HCV infection, most of them already infected with human immunodeficiency virus (HIV), and serum was collected at the time of diagnosis and longitudinally over a six-month period until initiation of antiviral therapy or confirmed spontaneous clearance. Quantification of serum sphingolipids was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Spontaneous clearance was observed in 11 out of 60 patients (18.3%), a sustained viral response (SVR) in 43 out of 45 patients (95.5%) receiving an antiviral treatment after follow-up, whereas persistence of HCV occurred in six out of 60 patients (10%). C24-ceramide (C24-Cer)-levels increased at follow-up in patients with spontaneous HCV eradication (p < 0.01), as compared to baseline. Sphingosine and sphinganine values were significantly upregulated in patients unable to clear HCV over time compared to patients with spontaneous clearance of HCV infection on follow-up (p = 0.013 and 0.006, respectively). In summary, the persistence of HCV after acute infection induces a downregulation of C24Cer and a simultaneous elevation of serum sphingosine and sphinganine concentrations.
Collapse
Affiliation(s)
- Georgios Grammatikos
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Julia Dietz
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nerea Ferreiros
- Pharmazentrum Frankfurt, Institut für klinische Pharmakologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Alexander Koch
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Georg Dultz
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dimitra Bon
- Institute of Biostatistics and Mathematical Modelling, Department of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | | - Thomas Lutz
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Gaby Knecht
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Peter Gute
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Eva Herrmann
- Pharmazentrum Frankfurt, Institut für klinische Pharmakologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Stefan Zeuzem
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Penelope Mavromara
- Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece.
- Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Christoph Sarrazin
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Dong B, Li H, Singh AB, Cao A, Liu J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 2014; 290:4047-58. [PMID: 25540198 DOI: 10.1074/jbc.m114.597229] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α.
Collapse
Affiliation(s)
- Bin Dong
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Hai Li
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Amar Bahadur Singh
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Aiqin Cao
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
5
|
Faustino LC, Pires RM, Lima AC, Cordeiro A, Souza LL, Ortiga-Carvalho TM. Liver glutathione S-transferase α expression is decreased by 3,5,3′-triiodothyronine in hypothyroid but not in euthyroid mice. Exp Physiol 2011; 96:790-800. [DOI: 10.1113/expphysiol.2011.058172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 2010; 50:104-14. [PMID: 20970453 DOI: 10.1016/j.plipres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and in treatment outcome. More than 10 sphingolipids and glycosphingolipids selectively mediate expressions of approximately 50 genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments.
Collapse
Affiliation(s)
- Gauri A Patwardhan
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | | |
Collapse
|
7
|
Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 2010; 15:6332-48. [PMID: 20877225 PMCID: PMC6257698 DOI: 10.3390/molecules15096332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 01/27/2023] Open
Abstract
The induction of phase II enzymes and phase III transporters contributes to the metabolism, detoxification of xenobiotics, antioxidant capacity, redox homeostasis and cell viability. Transactivation of the genes that encode for phase II enzymes and phase III transporters is coordinatively regulated by activating transcription factors in response to external stimuli. Comprehensive studies indicate that antioxidant phytochemicals promote the induction of phase II enzymes and/or phase III transporters through various signaling pathways, including phosphoinositide 3-kinase, protein kinase C, and mitogen-activated protein kinases. This paper focuses on the molecular mechanisms and signaling pathways responsible for the transactivation of genes encoding for these proteins, as orchestrated by a series of transcription factors and related signaling components.
Collapse
|
8
|
Liu YY, Yu JY, Yin D, Patwardhan GA, Gupta V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM, Gouaze-Andersson V, Consoli DP, Cabot MC. A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 2008; 22:2541-51. [PMID: 18245173 DOI: 10.1096/fj.07-092981] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advanced cancers acquire resistance to chemotherapy, and this results in treatment failure. The cellular mechanisms of chemotherapy resistance are not well understood. Here, for the first time, we show that ceramide contributes to cellular resistance to doxorubicin through up-regulating the gene expression of glucosylceramide synthase (GCS). Ceramide, a cellular lipid messenger, modulates doxorubicin-induced cell death. GCS catalyzes ceramide glycosylation, converting ceramide to glucosylceramide; this process hastens ceramide clearance and limits ceramide-induced apoptosis. In the present study, we evaluated the role of the GCS gene in doxorubicin resistance using several paired wild-type and drug-resistant (doxorubicin-selected) cancer cell lines, including breast, ovary, cervical, and colon. GCS was overexpressed in all drug-resistant counterparts, and suppressing GCS overexpression using antisense oligonucleotide restored doxorubicin sensitivity. Characterizing the effect mechanism showed that doxorubicin exposure increased ceramide levels, enhanced GCS expression, and imparted cellular resistance. Exogenous C(6)-ceramide and sphingomyelinase treatments mimicked the influence of doxorubicin on GCS, activating the GCS promoter and up-regulating GCS gene expression. Fumonisin B(1), an inhibitor of ceramide synthesis, significantly suppressed doxorubicin-up-regulated GCS expression. Promoter truncation, point mutation, gel-shift, and protein-DNA ELISA analysis showed that transcription factor Sp1 was essential for ceramide-induced GCS up-regulation. These data indicate that ceramide-governed GCS gene expression drives cellular resistance to doxorubicin.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Ave., Monroe, LA 71209, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bae EJ, Cho MJ, Kim SG. Repression of γ-Glutamylcysteine Synthetase and Glutathione S-Transferases by Metformin, an Anti-diabetic Agent, in H4IIE Rat Hepatocytes. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Ng L, Nichols K, O'Rourke K, Maslen A, Kirby GM. Repression of human GSTA1 by interleukin-1beta is mediated by variant hepatic nuclear factor-1C. Mol Pharmacol 2007; 71:201-8. [PMID: 17021248 DOI: 10.1124/mol.106.028563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Down-regulation of glutathione transferase A1 (GSTA1) expression has profound implications in cytoprotection against toxic by-products of lipid peroxidation produced during inflammation. We investigated the role of hepatic nuclear factor 1 (HNF-1) in repression of human GSTA1 expression by interleukin (IL)-1beta in Caco-2 cells. In luciferase reporter assays, overexpression of HNF-1alpha increased GSTA1 transcriptional activity via an HNF-1 response element (HRE) in the proximal promoter. In addition, constitutive mRNA levels of GSTA1 and HNF-1alpha rose concurrently in Caco-2 cells with increasing stage of confluence. IL-1beta reduced GSTA1 mRNA levels at all stages of confluence; however, HNF-1alpha mRNA levels were not altered. IL-1beta repressed GSTA1 transcriptional activity, an effect that was abolished by mutating the HRE. Similar results were observed in HT-29 and HepG2 cells. Overexpression of HNF-1alpha did not counteract IL-1beta-mediated repression of GSTA1 transcription either in reporter assays or at the mRNA level. Involvement of the transdominant repressor C isoform of variant HNF-1 (vHNF-1C) in GSTA1 repression was demonstrated, because vHNF-1C overexpression significantly reduced GSTA1 transcriptional activity. Finally, IL-1beta caused concentration-related up-regulation of vHNF-1C mRNA levels and increased binding of vHNF-1C protein to the HRE, whereas HNF-1alpha-HRE complex formation was reduced. These findings indicate that IL-1beta represses GSTA1 transcription via a mechanism involving overexpression of vHNF-1C.
Collapse
Affiliation(s)
- Lorraine Ng
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
11
|
Romero L, Ng L, Kirby GM. Chemical inducers of rodent glutathione s-transferases down-regulate human GSTA1 transcription through a mechanism involving variant hepatic nuclear factor 1-C. Mol Pharmacol 2006; 70:277-86. [PMID: 16608922 DOI: 10.1124/mol.105.018622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of human GSTA1 by chemical inducers of rodent glutathione S-transferases (GSTs) and the regulatory role of hepatic nuclear factor (HNF) 1 was investigated in Caco-2 cells. Treatment of preconfluent and confluent cells with 12-O-tetra-decanoyl phorbol-13-acetate (TPA), 3-methylcholanthrene (3-MC), 2-tert-butyl-4-hydroxy-anisol (BHA), and phenobarbital (PB) reduced GSTA1 mRNA levels in preconfluent and confluent cells. Constitutive levels of GSTA1 and HNF1alpha mRNA were elevated 6.25- and 50-fold, respectively, in postconfluent cells compared with preconfluent cells. Overexpression of HNF1alpha in cells transfected with a GSTA1 promoter-luciferase construct (pGSTA1-1591-luc) resulted in dose-related increases in reporter activity not observed when an HNF1 response element (HRE) in the proximal promoter was mutated (pGSTA1-DeltaHNF1-luc). TPA, 3-MC, BHA, and PB reduced HNF1alpha mRNA levels in preconfluent and confluent cells and caused marked reductions in luciferase activity in pGSTA1-1591-luc transfectants. Transcriptional repression was abrogated with pGSTA1-DeltaHNF1-luc and with truncated constructs that eliminated a functional HRE. Moreover, cotransfection of pHNF1alpha with pGSTA1-1591-luc partially prevented the reduction in luciferase activity by rodent GST inducers. Immunoblot analysis of DNA binding studies indicate that variant (v)HNF1-C binding to HRE is increased in preconfluent cells treated with 3-MC, BHA, and PB. In addition, overexpression of vHNF1-C repressed GSTA1 transcriptional activity in luciferase reporter assays. Finally, treatment with 3-MC, BHA, and PB increased vHNF1-C mRNA levels in preconfluent cells. These data demonstrate that repression of human GSTA1 transcription by chemical inducers of rodent GSTs occurs, in part, through a mechanism involving the repressive action of vHNF1-C.
Collapse
Affiliation(s)
- Laura Romero
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | | |
Collapse
|
12
|
Stephenson AH, Seidel ER. Analysis of the interactions of Nrf-2, PMF-1, and CSN-7 with the 5'-flanking sequence of the mouse 4E-BP1 gene. Life Sci 2006; 79:1221-7. [PMID: 16647090 DOI: 10.1016/j.lfs.2006.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 03/09/2006] [Accepted: 03/27/2006] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf-2) binds to a specific polyamine responsive element (PRE) in the promoter region of the spermidine-spermine acetyltransferase (SSAT) gene, a key component of the polyamine catabolic pathway. Regulation of SSAT gene transcription requires the additional interaction of Nrf-2 with polyamine modulated factor 1 (PMF-1). Likewise, transcription of the eukaryotic initiation factor 4E binding protein 1 (4E-BP1) gene is regulated in a polyamine-dependent manner, but the actual mechanism has not previously been determined. Analysis of the 5'-flanking sequence of the murine 4E-BP1 gene indicated the presence of several potential PRE sites, which might be involved in regulating its transcription. Our goal in this research was to determine potential interactions between Nrf-2, PMF-1, the human homologue of the Arabidopsis signalosome complex (CSN-7), and these potential PRE sites. Four PCR fragments containing regions with considerable homology (78%) to the human PRE were generated from the 5'-flanking sequence of the mouse 4E-BP1 gene and the fragments were used in electrophoretic gel mobility shift and supershift assays. Purified Nrf-2 interacted with all four of these fragments, and similar gel shifts were observed with both cytoplasmic and nuclear fractions of NIH-3T3 cells. However, polyamine depletion with difluoromethylornithine (DFMO) eliminated the gel shift. Supershift assays indicated that the shift was due to the binding of Nrf-2, and the binding was competitive with a known Nrf-2 binding sequence. Purified PMF-1 did not bind any of the PCR fragments alone, but when added with Nrf-2, decreased the magnitude of the gel shift for one of the fragments (PRE located at -2060 relative to the transcription start site). CSN-7 did not interact with the sequences, nor did it inhibit protein/DNA interaction. These data indicate a possible mechanism by which polyamines enhance the binding of a Nrf-2/PMF-1 complex to the 5'-flanking region of the 4E-BP1 gene. Since polyamines increase expression of the 4E-BP1 gene, it seems likely that formation of this complex is involved in its transcriptional regulation.
Collapse
Affiliation(s)
- A H Stephenson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
13
|
Ki SH, Cho IJ, Choi DW, Kim SG. Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPbeta TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Mol Cell Biol 2005; 25:4150-65. [PMID: 15870285 PMCID: PMC1087722 DOI: 10.1128/mcb.25.10.4150-4165.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the glutathione S-transferase gene (GST), whose induction accounts for cancer chemoprevention, is regulated by activation of CCAAT/enhancer binding protein beta (C/EBPbeta) and NF-E2-related factor 2 (Nrf2). The present study investigated the repressing effects of activating glucocorticoid receptor (GR) on C/EBPbeta- and Nrf2-mediated GSTA2 gene induction and the mechanism. Dexamethasone that activates GR inhibited constitutive and oltipraz- or tert-butylhydroquinone (t-BHQ)-inducible GSTA2 expression in H4IIE cells. Also, dexamethasone repressed GSTA2 promoter-luciferase gene activity. Dexamethasone-GR activation did not inhibit nuclear translocation of C/EBPbeta or Nrf2 nor their DNA binding activities induced by oltipraz or t-BHQ. Deletion of the glucocorticoid response element (GRE) in the GSTA2 promoter abolished dexamethasone inhibition of the gene induction. Immunoprecipitation-immunoblotting, chromatin immunoprecipitation, and GST pull-down assays revealed that silencing mediator for retinoid and thyroid hormone receptors (SMRT), a corepressor recruited to steroid-GR complex for histone deacetylation, bound to TAD domain of C/EBPbeta and Neh4/5 domain of Nrf2. The GSTA2 promoter-luciferase activities were decreased by SMRT but not by truncated SMRTs. The small interference RNA (siRNA) against SMRT abolished SMRT repression of the gene induction by C/EBPbeta or Nrf2. The plasmid transfection and siRNA experiments directly evidenced the functional role of SMRT in GSTA2 repression. In conclusion, dexamethasone antagonizes C/EBPbeta- and Nrf2-mediated GSTA2 gene induction via ligand-GR binding to the GRE, and steroid-mediated GSTA2 repression involves inactivation of C/EBPbeta and Nrf2 by SMRT recruited to steroid-GR complex.
Collapse
Affiliation(s)
- Sung Hwan Ki
- College of Pharmacy, Seoul National University, Sillim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|