1
|
Kim SE, Chung G, Kim SK. Phytochemical-based therapeutics from traditional eastern medicine: analgesic effects and ion channel modulation. FRONTIERS IN PAIN RESEARCH 2025; 6:1537154. [PMID: 39958366 PMCID: PMC11825757 DOI: 10.3389/fpain.2025.1537154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pain management remains a major challenge in the healthcare system. While synthetic analgesics are widely used for pain management, their effectiveness in managing chronic pain is often limited due to low efficacy or side effects. Thus, there is growing interest in exploring alternative pain relief methods, particularly using medicinal plants from traditional Eastern medicine and their phytochemicals. Previous studies have demonstrated the modulatory effects of various phytochemicals derived from herbal medicine on pain-related ion channels, such as voltage-gated sodium channels (Nav), calcium channels (Ca2+), and transient receptor potential (TRP) channels. Since these ion channels are integral to the transmission and modulation of pain signals, the ability of specific phytochemicals to activate or inhibit these channels presents a promising avenue for the development of novel analgesics. The goal of this review is to merge herbal insights with ion channel research to highlight the potential of natural compounds for safe and effective pain management. In this regard, we summarize the discovery and characterization of pain-relieving phytochemicals from herbal medicine, and we discuss their mechanisms of action and their potential to mimic or enhance the effects of conventional analgesics through ion channel modulation.
Collapse
Affiliation(s)
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Meng J, Zhang Z, Wang Y, Long L, Luo A, Luo Z, Cai K, Chen X, Nie H. The exploration of active components of 701 Dieda Zhentong patch and analgesic properties on chronic constriction injury rats. Purinergic Signal 2024:10.1007/s11302-024-10056-5. [PMID: 39495437 DOI: 10.1007/s11302-024-10056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
An increasing number of traditional Chinese medicine(TCM) have been confirmed to possess analgesic bioactivity. 701 Dieda Zhentong patch(701-DZP) which includes 14 kinds of TCMs exhibited excellent efficacy in alleviating back or leg pain after a soft-tissue injury. In this study, UPLC/MS was used to construct the fingerprint of 701-DZP and excavate the potential bioactive ingredients of it. 21 compounds were detected and identified in the fingerprint including 12 compounds that pass through the skin and 6 compounds observed in the plasma. Then, the role of 701-DZP in neuropathic pain(NPP) was assessed by network pharmacology and CCI rats. 701-DZP inhibited pain sensitization(MWT and TWL) and the release of inflammation mediators(IL-1β and IL-6) in CCI rats which were in keeping with the core targets of the PPI network. The results of IHC and Western blot showed that the expression of the P2X3 receptor in the DRG and SC of CCI rats was significantly reduced after the treatment with 701-DZP. Moreover, the 701-DZP down-regulated the level of phosphorylation of ERK1/2 MAPK instead of P38 MAPK in the DRG of CCI rats. In conclusion, this study has clarified 6 potential analgesic active compounds of 701-DZP and explored the analgesic properties, which may inhibit the expression of the P2X3 receptor to reduce the release of inflammatory mediators based on the ERK1/2 MAPK pathway to alleviate the NPP.
Collapse
Affiliation(s)
- Jun Meng
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yujie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lina Long
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Anqi Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kexin Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xi Chen
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|