1
|
Grunz-Borgmann EA, Nichols LA, Spagnoli S, Trzeciakowski JP, Valliyodan B, Hou J, Li J, Cheng J, Kerley M, Fritsche K, Parrish AR. The renoprotective effects of soy protein in the aging rat kidney. MEDICAL RESEARCH ARCHIVES 2020; 8:10.18103/mra.v8i3.2065. [PMID: 34222651 PMCID: PMC8247450 DOI: 10.18103/mra.v8i3.2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is a risk factor for chronic kidney disease (CKD) and is itself associated with alterations in renal structure and function. There are no specific interventions to attenuate age-dependent renal dysfunction and the mechanism(s) responsible for these deficits have not been fully elucidated. In this study, male Fischer 344 rats, which develop age-dependent nephropathy, were feed a casein- or soy protein diet beginning at 16 mon (late life intervention) and renal structure and function was assessed at 20 mon. The soy diet did not significantly affect body weight, but was renoprotective as assessed by decreased proteinuria, increased glomerular filtration rate (GFR) and decreased urinary kidney injury molecule-1 (Kim-1). Renal fibrosis, as assessed by hydroxyproline content, was decreased by the soy diet, as were several indicators of inflammation. RNA sequencing identified several candidates for the renoprotective effects of soy, including decreased expression of Twist2, a basic helix-loop-helix transcription factor that network analysis suggest may regulate the expression of several genes associated with renal dysfunction. Twist2 expression is upregulated in the aging kidney and the unilateral ureteral obstruction of fibrosis; the expression is limited to distal tubules of mice. Taken together, these data demonstrate the renoprotective potential of soy protein, putatively by reducing inflammation and fibrosis, and identify Twist2 as a novel mediator of renal dysfunction that is targeted by soy.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77807
| | - Babu Valliyodan
- Division of Plant Sciences, College of Agriculture, Food and Natural Resource, University of Missouri, Columbia, MO 65211
| | - Jie Hou
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | | | - Jianlin Cheng
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | - Monty Kerley
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 6521
| | - Kevin Fritsche
- Department of Nutrition and Exercise Physiology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice. J Biosci 2018; 42:275-283. [PMID: 28569251 DOI: 10.1007/s12038-017-9683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.
Collapse
|
3
|
Gekle M. Kidney and aging — A narrative review. Exp Gerontol 2017; 87:153-155. [DOI: 10.1016/j.exger.2016.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/28/2022]
|
4
|
Tamma G, Goswami N, Reichmuth J, De Santo NG, Valenti G. Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 2015; 156:777-88. [PMID: 25514088 DOI: 10.1210/en.2014-1812] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Functioning of the hypothalamic-neurohypophyseal-vasopressin axis is altered in aging, and the pathway may represent a plausible target to slow the process of aging. Arginine vasopressin, a nine-amino acid peptide that is secreted from the posterior pituitary in response to high plasma osmolality and hypotension, is central in this pathway. Vasopressin has important roles in circulatory and water homoeostasis mediated by vasopressin receptor subtypes V1a (vascular), V1b (pituitary), and V2 (vascular, renal). A dysfunction in this pathway as a result of aging can result in multiple abnormalities in several physiological systems. In addition, vasopressin plasma concentration is significantly higher in males than in females and vasopressin-mediated effects on renal and vascular targets are more pronounced in males than in females. These findings may be caused by sex differences in vasopressin secretion and action, making men more susceptible than females to diseases like hypertension, cardiovascular and chronic kidney diseases, and urolithiasis. Recently the availability of new, potent, orally active vasopressin receptor antagonists, the vaptans, has strongly increased the interest on vasopressin and its receptors as a new target for prevention of age-related diseases associated with its receptor-altered signaling. This review summarizes the recent literature in the field of vasopressin signaling in age-dependent abnormalities in kidney, cardiovascular function, and bone function.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics (G.T., G.V.), University of Bari, 70125 Bari, Italy; Istituto Nazionale di Biostrutture e Biosistemi (G.T., G.V.), 00136 Roma, Italy; Gravitational Physiology and Medicine Research Unit (N.G., J.R.), Institute of Physiology, Medical University of Graz, 8036 Graz, Austria; Department of Medicine (N.G.D.S.), Second University of Naples, 80138 Naples, Italy; and Centro di Eccellenza di Genomica (G.V.) Campo Biomedico Ed Agrario, University of Bari, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
5
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
6
|
Oelusarz A, Nichols LA, Grunz-Borgmann EA, Chen G, Akintola AD, Catania JM, Burghardt RC, Trzeciakowski JP, Parrish AR. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol Rep 2013; 1. [PMID: 24273653 PMCID: PMC3834982 DOI: 10.1002/phy2.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD.
Collapse
Affiliation(s)
- Anna Oelusarz
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Schlanger LE, Bailey JL, Sands JM. Electrolytes in the aging. Adv Chronic Kidney Dis 2010; 17:308-19. [PMID: 20610358 PMCID: PMC2901254 DOI: 10.1053/j.ackd.2010.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/24/2010] [Accepted: 03/28/2010] [Indexed: 01/28/2023]
Abstract
The elderly population in the United States continues to grow and is expected to double by 2050. With aging, there are degenerative changes in many organs and the kidney is no exception. After 40 years of age, there is an increase in cortical glomerulosclerosis and a decline in both glomerular filtration rate and renal plasma flow. These changes may be associated with an inability to excrete a concentrated or a dilute urine, ammonium, sodium, or potassium. Hypernatremia and hyponatremia are the most common electrolyte abnormalities found in the elderly and both are associated with a high mortality. Under normal conditions, the elderly are able to maintain water and electrolyte balance, but this may be jeopardized by an illness, a decline in cognitive ability, and with certain medications. Therefore, it is important to be aware of the potential electrolyte abnormalities in the elderly that can arise under these various conditions to prevent adverse outcomes.
Collapse
Affiliation(s)
- Lynn E. Schlanger
- Assistant Professor of Medicine, Emory University/VAMC at Atlanta, Address 1670 Clairmont Road, Decatur, GA 30033, Telephone: 404-321-6111 ext 7070, Fax: 404-235-3049
| | - James Lynch Bailey
- Professor of Medicine, Director of the Renal Fellowship Program, Emory University, Telephone: 404-727-9215, Fax: 404-72703425
| | - Jeff M. Sands
- Juha P. Kokko Professor of Medicine and Physiology, Director, Renal Division, Executive Vice-Chair, Department of Medicine, Associate Dean for Clinical and Translational Research, Telephone: 404-727-2525, Fax: 404-727-3425
| |
Collapse
|
9
|
Cheung CM, Ponnusamy A, Anderton JG. Management of acute renal failure in the elderly patient: a clinician's guide. Drugs Aging 2008; 25:455-76. [PMID: 18540687 DOI: 10.2165/00002512-200825060-00002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous anatomical and functional changes occurring in the aging kidney lead to reduced glomerular filtration rate, lower renal blood flow and impaired renal autoregulation. The elderly are especially vulnerable to the development of renal dysfunction and in this population acute renal failure (ARF) is a common problem. ARF is often iatrogenic and multifactorial; common iatrogenic combinations include pre-existing renal dysfunction and exposure to nephrotoxins such as radiocontrast agents or aminoglycosides, use of NSAIDs in patients with congestive cardiac failure and use of ACE inhibitors and diuretics in patients with underlying atherosclerotic renal artery stenosis. The aetiology of ARF is classically grouped into three categories: prerenal, intrinsic and postrenal. Prerenal ARF is the second most common cause of ARF in the elderly, accounting for nearly one-third of all hospitalized cases. Common causes can be grouped into true volume depletion (e.g. decreased fluid intake), decreased effective blood volume (e.g. systemic vasodilation) and haemodynamic (e.g. renal artery stenosis, NSAID use). Acute tubular necrosis (ATN) is the most common cause of intrinsic ARF and is responsible for over 50% of ARF in hospitalized patients, and up to 76% of cases in patients in intensive care units. ATN usually occurs after an acute ischaemic or toxic event. The pathogenesis of ATN involves an interplay of processes that include endothelial injury, microvascular flow disruption, tubular hypoxia, dysfunction and apoptosis, tubular obstruction and trans-tubular back-leak. Vasculitis causing ARF should not be missed as this condition is potentially life threatening. The likelihood of a postrenal cause for ARF increases with age. Benign prostatic hypertrophy, prostatic carcinoma and pelvic malignancies are all important causes. Early identification of ARF secondary to obstruction with renal imaging is essential, and complete or partial renal recovery usually ensues following relief of the obstruction.A comprehensive medical and drug history and physical examination are all invaluable. Particular attention should be paid to the fluid status of the patient (skin turgor, jugular venous pressure, lying and standing blood pressure, urine output). Urinalysis should be performed to detect evidence of proteinuria and haematuria, which will aid diagnosis. Fractional excretion of sodium and urine osmolality may be measured but the widespread use of diuretics in the elderly gives rise to unreliable results. Renal imaging, usually ultrasound scanning, is routinely performed for assessment of renal size and to exclude urinary obstruction. In some cases, renal biopsy is necessary to provide specific diagnostic information. The general principles of managing ARF include treatment of life-threatening features such as shock, respiratory failure, hyperkalaemia, pulmonary oedema, metabolic acidosis and sepsis; stopping and avoiding administration of nephrotoxins; optimization of haemodynamic and fluid status; adjustment of drug dosage appropriate to glomerular filtration rate; early nutritional support; and early referral to nephrologists for diagnosis of ARF cause, timely initiation of dialysis and initiation of specific treatment. The treatment of prerenal and ATN ARF is largely supportive with little evidence of benefit from current pharmacological therapies. Despite advances in critical care medicine and renal replacement therapy, the mortality of ARF has not changed significantly over the last 40 years, with current mortality rates being up to 75%.
Collapse
Affiliation(s)
- Ching M Cheung
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Preston, UK
| | | | | |
Collapse
|
10
|
|
11
|
Chen G, Bridenbaugh EA, Akintola AD, Catania JM, Vaidya VS, Bonventre JV, Dearman AC, Sampson HW, Zawieja DC, Burghardt RC, Parrish AR. Increased susceptibility of aging kidney to ischemic injury: identification of candidate genes changed during aging, but corrected by caloric restriction. Am J Physiol Renal Physiol 2007; 293:F1272-81. [PMID: 17670906 PMCID: PMC2758575 DOI: 10.1152/ajprenal.00138.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with an increased incidence and severity of acute renal failure. However, the molecular mechanism underlying the increased susceptibility to injury remains undefined. These experiments were designed to investigate the influence of age on the response of the kidney to ischemic injury and to identify candidate genes that may mediate this response. Renal slices prepared from young (5 mo), aged ad libitum (aged-AL; 24 mo), and aged caloric-restricted (aged-CR; 24 mo) male Fischer 344 rats were subjected to ischemic stress (100% N(2)) for 0-60 min. As assessed by biochemical and histological evaluation, slices from aged-AL rats were more susceptible to injury than young counterparts. Importantly, caloric restriction attenuated the increased susceptibility to injury. In an attempt to identify the molecular pathway(s) underlying this response, microarray analysis was performed on tissue harvested from the same animals used for the viability experiments. RNA was isolated and the corresponding cDNA was hybridized to CodeLink Rat Whole Genome Bioarray slides. Subsequent gene expression analysis was performed using GeneSpring software. Using two-sample t-tests and a twofold cut-off, the expression of 92 genes was changed during aging and attenuated by caloric restriction, including claudin-7, kidney injury molecule-1 (Kim-1), and matrix metalloproteinase-7 (MMP-7). Claudin-7 gene expression peaked at 18 mo; however, increased protein expression in certain tubular epithelial cells was seen at 24 mo. Kim-1 gene expression was not elevated at 8 or 12 mo but was at 18 and 24 mo. However, changes in Kim-1 protein expression were only seen at 24 mo and corresponded to increased urinary levels. Importantly, these changes were attenuated by caloric restriction. MMP-7 gene expression was decreased at 8 mo, but an age-dependent increase was seen at 24 mo. Increased MMP-7 protein expression in tubular epithelial cells at 24 mo was correlated with the gene expression pattern. In summary, we identified genes changed by aging and changes attenuated by caloric restriction. This will facilitate investigation into the molecular mechanism mediating the age-related increase in susceptibility to injury.
Collapse
Affiliation(s)
- G. Chen
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - E. A. Bridenbaugh
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - A. D. Akintola
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - J. M. Catania
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - V. S. Vaidya
- Renal Division, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts
| | - J. V. Bonventre
- Renal Division, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts
| | - A. C. Dearman
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - H. W. Sampson
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - D. C. Zawieja
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| | - R. C. Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - A. R. Parrish
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M University System Health Science Center, College Station
| |
Collapse
|
12
|
Odera K, Goto S, Takahashi R. Age-related change of endocytic receptors megalin and cubilin in the kidney in rats. Biogerontology 2007; 8:505-15. [PMID: 17453355 DOI: 10.1007/s10522-007-9093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 02/02/2007] [Indexed: 11/27/2022]
Abstract
Megalin and cubilin are the major endocytic receptors responsible for resorption of glomerular filtrate proteins, particularly albumin, in the renal proximal tubule. In order to better understand the mechanism of the development of albuminuria with age in rats, we investigated age-related change of the amount and cellular localization of both receptors in the kidney. Immunoblot analysis of the kidney extracts showed that the amount of megalin significantly decreased with age. Although there was no age-related change in the amount of intact cubilin, the amount of cubilin fragments increased with age. Immunohistochemical study revealed that megalin and cubilin were predominantly localized in brush border membrane of proximal tubular cells in young rats, but the receptors tended to diffuse into the cytoplasm in the old rats. Interestingly, low but significant amounts of megalin and cubilin were present in the glomerular cells in addition to the proximal tubular cells. The quantity of receptors progressively increased in the glomerulus with age. This age-related increase might be to compensate for the age-related defect of the uptake of albumin by the proximal tubules. Thus, although it is unclear whether megalin and cubilin in the glomerulus contribute to the uptake of albumin in primary urine, the age-related increase in the amount of albumin in urine might at least partly be due to quantitative and qualitative alterations of both receptors in the proximal tubule.
Collapse
Affiliation(s)
- Keiko Odera
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Fred G Silva
- The United States and Canadian Academy of Pathology, Emory University and the Medical college of Georgia, Augusta, GA 30909, USA.
| |
Collapse
|