1
|
The Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel) 2022; 11:antiox11020336. [PMID: 35204217 PMCID: PMC8868312 DOI: 10.3390/antiox11020336] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Medical advances and the availability of diagnostic tools have considerably increased life expectancy and, consequently, the elderly segment of the world population. As age is a major risk factor in cardiovascular disease (CVD), it is critical to understand the changes in cardiac structure and function during the aging process. The phenotypes and molecular mechanisms of cardiac aging include several factors. An increase in oxidative stress is a major player in cardiac aging. Reactive oxygen species (ROS) production is an important mechanism for maintaining physiological processes; its generation is regulated by a system of antioxidant enzymes. Oxidative stress occurs from an imbalance between ROS production and antioxidant defenses resulting in the accumulation of free radicals. In the heart, ROS activate signaling pathways involved in myocyte hypertrophy, interstitial fibrosis, contractile dysfunction, and inflammation thereby affecting cell structure and function, and contributing to cardiac damage and remodeling. In this manuscript, we review recent published research on cardiac aging. We summarize the aging heart biology, highlighting key molecular pathways and cellular processes that underlie the redox signaling changes during aging. Main ROS sources, antioxidant defenses, and the role of dysfunctional mitochondria in the aging heart are addressed. As metabolism changes contribute to cardiac aging, we also comment on the most prevalent metabolic alterations. This review will help us to understand the mechanisms involved in the heart aging process and will provide a background for attractive molecular targets to prevent age-driven pathology of the heart. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
2
|
Lee JA, Kuchakulla M, Arora H, Kulandavelu S, Gonzalez E, Masterson TA, Hare JM, Kaiser UB, Ramasamy R. Age Induced Nitroso-Redox Imbalance Leads to Subclinical Hypogonadism in Male Mice. Front Endocrinol (Lausanne) 2019; 10:190. [PMID: 30984111 PMCID: PMC6447610 DOI: 10.3389/fendo.2019.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: The cause of age-related changes in testosterone remains unclear. We hypothesized that increased nitroso-redox imbalance with aging could affect testosterone production. Materials and Methods: We measured several markers of nitroso-redox imbalance (4-HNE, 3-NT, and NT) in serum of S-nitrosoglutathione reductase knock out (GSNOR KO) mice that have increased nitroso-redox imbalance and compared these to wild-type (WT) mice. We evaluated the impact of age-induced nitroso-redox imbalance on serum luteinizing hormone (LH) and testosterone (T) in WT young (<2 months), middle-aged (2-6 months), and aged (>12 months) mice. Finally, to elucidate the susceptibility of testes to nitroso-redox imbalance, we measured 4-HNE protein levels in the testes of WT and KO mice. Results: We identified 4-HNE as a reliable marker of nitroso-redox imbalance, as evidenced by increased protein levels in serum of GSNOR KO mice compared with WT mice. We demonstrated that 4-HNE serum protein levels increase in WT mice with age but do not accumulate in the testes. We also found that T levels were similar in all age groups. Interestingly, we found that serum LH levels in aged and middle-aged mice were increased when compared to young mice (n = 5) consistent with the phenotype of subclinical hypogonadism. Conclusions: Increased serum 4-HNE and LH levels without changes in T with age suggest that nitroso-redox imbalance is associated with subclinical hypogonadism in aged mice. Recognizing the relationship and etiology of a currently poorly understood classification of hypogonadism could be a paradigm shift in how age-related testosterone change is diagnosed and treated.
Collapse
Affiliation(s)
- John Alden Lee
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Evert Gonzalez
- Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Thomas A. Masterson
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Joshua M. Hare
- Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Valdés Á, Treuer AV, Barrios G, Ponce N, Fuentealba R, Dulce RA, González DR. NOX Inhibition Improves β-Adrenergic Stimulated Contractility and Intracellular Calcium Handling in the Aged Rat Heart. Int J Mol Sci 2018; 19:ijms19082404. [PMID: 30111689 PMCID: PMC6121436 DOI: 10.3390/ijms19082404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiac aging is characterized by alterations in contractility and intracellular calcium ([Ca2+]i) homeostasis. It has been suggested that oxidative stress may be involved in this process. We and others have reported that in cardiomyopathies the NADPH oxidase (NOX)-derived superoxide is increased, with a negative impact on [Ca2+]i and contractility. We tested the hypothesis that in the aged heart, [Ca2+]i handling and contractility are disturbed by NOX-derived superoxide. For this we used adults (≈5 month-old) and aged (20–24 month-old) rats. Contractility was evaluated in isolated hearts, challenged with isoproterenol. To assess [Ca2+]i, isolated cardiac myocytes were field-stimulated and [Ca2+]i was monitored with fura-2. Cardiac concentration-response to isoproterenol was depressed in aged compared to adults hearts (p < 0.005), but was restored by NOX inhibitors apocynin and VAS2870. In isolated cardiomyocytes, apocynin increased the amplitude of [Ca2+]i in aged myocytes (p < 0.05). Time-50 [Ca2+]i decay was increased in aged myocytes (p < 0.05) and reduced towards normal by NOX inhibition. In addition, we found that myofilaments Ca2+ sensitivity was reduced in aged myocytes (p < 0.05), and was further reduced by apocynin. NOX2 expression along with NADPH oxidase activity was increased in aged hearts. Phospholamban phosphorylation (Ser16/Thr17) after isoproterenol treatment was reduced in aged hearts compared to adults and was restored by apocynin treatment (p < 0.05). In conclusion, β-adrenergic-induced contractility was depressed in aged hearts, and NOX inhibition restored back to normal. Moreover, altered Ca2+ handling in aged myocytes was also improved by NOX inhibition. These results suggest a NOX-dependent effect in aged myocytes at the level of Ca2+ handling proteins and myofilaments.
Collapse
Affiliation(s)
- Álvaro Valdés
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| | - Adriana V Treuer
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| | - Guillermo Barrios
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| | - Nikol Ponce
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| | - Roberto Fuentealba
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Daniel R González
- Departamento de Ciencias Básicas Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
4
|
Richards JC, Crecelius AR, Larson DG, Dinenno FA. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults. Am J Physiol Heart Circ Physiol 2015; 309:H360-8. [PMID: 25980023 DOI: 10.1152/ajpheart.00209.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation.
Collapse
Affiliation(s)
- Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and
| | - Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, Colorado
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
5
|
Puca AA, Carrizzo A, Ferrario A, Villa F, Vecchione C. Endothelial nitric oxide synthase, vascular integrity and human exceptional longevity. IMMUNITY & AGEING 2012; 9:26. [PMID: 23153280 PMCID: PMC3538508 DOI: 10.1186/1742-4933-9-26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
Abstract
Aging is the sum of the deleterious changes that occur as time goes by. It is the main risk factor for the development of cardiovascular disease, and aging of the vasculature is the event that most often impacts on the health of elderly people. The “free-radical theory of aging” was proposed to explain aging as a consequence of the accumulation of reactive oxygen species (ROS). However, recent findings contradict this theory, and it now seems that mechanisms mediating longevity act through induction of oxidative stress. In fact, calorie restriction − a powerful way of delaying aging − increases ROS accumulation due to stimulation of the basal metabolic rate; moreover, reports show that antioxidant therapy is detrimental to healthy aging. We also now know that genetic manipulation of the insulin-like-growth-factor-1/insulin signal (IIS) has a profound impact on the rate of aging and that the IIS is modulated by calorie restriction and physical exercise. The IIS regulates activation of nitric oxide synthase (eNOS), the activity of which is essential to improving lifespan through calorie restriction, as demonstrated by experiments on eNOS knockout mice. Indeed, eNOS has a key role in maintaining vascular integrity during aging by activating vasorelaxation and allowing migration and angiogenesis. In this review, we will overview current literature on these topics and we will try to convince the reader of the importance of vascular integrity and nitric oxide production in determining healthy aging.
Collapse
|
6
|
Leong PK, Chen N, Ko KM. Mitochondrial decay in ageing: 'Qi-invigorating' schisandrin B as a hormetic agent for mitigating age-related diseases. Clin Exp Pharmacol Physiol 2012; 39:256-64. [PMID: 21895737 DOI: 10.1111/j.1440-1681.2011.05600.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The mitochondrial free radical theory of ageing (MFRTA) proposes a primary role for mitochondrial reactive oxygen species (ROS) in the ageing process. The reductive hot spot hypothesis of mammalian ageing serves as a supplement to the MFRTA by explaining how the relatively few cells that have lost oxidative phosphorylation capacity due to mitochondrial DNA mutations can be toxic to the rest of the body and result in the development of age-related diseases. 2. Schisandrin B (SchB), which can induce both a glutathione anti-oxidant and a heat shock response via redox-sensitive signalling pathways, is a hormetic agent potentially useful for increasing the resistance of tissues to oxidative damage. The enhanced cellular/mitochondrial anti-oxidant status and heat shock response afforded by SchB can preserve the structural and functional integrity of mitochondria, suggesting a potential role for SchB in ameliorating age-related diseases. 3. Future studies will focus on investigating whether SchB can produce the hormetic response in humans.
Collapse
Affiliation(s)
- Pou K Leong
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
7
|
Ahn HY, Fairfull-Smith K, Morrow BJ, Lussini V, Kim B, Bondar MV, Bottle S, Belfield KD. Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides. J Am Chem Soc 2012; 134:4721-30. [PMID: 22380794 PMCID: PMC3303203 DOI: 10.1021/ja210315x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 12/14/2022]
Abstract
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.
Collapse
Affiliation(s)
- Hyo-Yang Ahn
- Department
of Chemistry, and CREOL, The College of Optics and Photonics, University of Central Florida, P.O. Box 162366, Orlando,
Florida 32816-2366, United States
| | - Kathryn
E. Fairfull-Smith
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434,
Brisbane, QLD, 4001, Australia
| | - Benjamin J. Morrow
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434,
Brisbane, QLD, 4001, Australia
| | - Vanessa Lussini
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434,
Brisbane, QLD, 4001, Australia
| | - Bosung Kim
- Department
of Chemistry, and CREOL, The College of Optics and Photonics, University of Central Florida, P.O. Box 162366, Orlando,
Florida 32816-2366, United States
| | - Mykhailo V. Bondar
- Institute of Physics, National Academy of Sciences, Prospect Nauki 46, Kiev
03028, Ukraine
| | - Steven
E. Bottle
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434,
Brisbane, QLD, 4001, Australia
| | - Kevin D. Belfield
- Department
of Chemistry, and CREOL, The College of Optics and Photonics, University of Central Florida, P.O. Box 162366, Orlando,
Florida 32816-2366, United States
| |
Collapse
|
8
|
Steppan J, Barodka V, Berkowitz DE, Nyhan D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol Res Pract 2011; 2011:263585. [PMID: 21845218 PMCID: PMC3154449 DOI: 10.4061/2011/263585] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/24/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023] Open
Abstract
Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
9
|
Pérez VI, Pierce A, de Waal EM, Ward WF, Bokov A, Chaudhuri A, Richardson A. Detection and quantification of protein disulfides in biological tissues a fluorescence-based proteomic approach. Methods Enzymol 2010; 473:161-77. [PMID: 20513477 DOI: 10.1016/s0076-6879(10)73008-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
While most of the amino acids in proteins are potential targets for oxidation, the thiol group in cysteine is one of the most reactive amino acid side chains. The thiol group can be oxidized to several states, including the disulfide bond. Despite the known sensitivity of cysteine to oxidation and the physiological importance of the thiol group to protein structure and function, little information is available on the oxidative modification of cysteine residues in proteins because of the lack of reproducible and sensitive assays to measure cysteine oxidation in the proteome. We have developed a fluorescence-based assay that allows one to quantify both the global level of protein disulfides in the cellular proteome as well as the disulfide content of individual proteins. This fluorescence-based assay is able to detect an increase in global protein disulfide levels after oxidative stress in vitro or in vivo. Using this assay, we show that the global protein disulfide levels increase significantly with age in liver cytosolic proteins, and we identified 11 proteins that show a more than twofold increase in disulfide content with age. Thus, the fluorescence-based assay we have developed allows one to quantify changes in the oxidation of cysteine residues to disulfides in the proteome of a cell or tissue.
Collapse
Affiliation(s)
- Viviana I Pérez
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Chang JC, Kou SJ, Lin WT, Liu CS. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010; 2:150-9. [PMID: 21160733 PMCID: PMC2999054 DOI: 10.4330/wjc.v2.i6.150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial physiology and biogenesis play a crucial role in the initiation and progression of cardiovascular disease following oxidative stress-induced damage such as atherosclerosis (AST). Dysfunctional mitochondria caused by an increase in mitochondrial reactive oxygen species (ROS) production, accumulation of mitochondrial DNA damage, and respiratory chain deficiency induces death of endothelial/smooth muscle cells and favors plaque formation/rupture via the regulation of mitochondrial biogenesis-related genes such as peroxisome proliferator-activated receptor γ coactivator (PGC-1), although more detailed mechanisms still need further study. Based on the effect of healthy mitochondria produced by mitochondrial biogenesis on decreasing ROS-mediated cell death and the recent finding that the regulation of PGC-1 involves mitochondrial fusion-related protein (mitofusin), we thus infer the regulatory role of mitochondrial fusion/fission balance in AST pathophysiology. In this review, the first section discusses the possible association between AST-inducing factors and the molecular regulatory mechanisms of mitochondrial biogenesis and dynamics, and explains the role of mitochondria-dependent regulation in cell apoptosis during AST development. Furthermore, nitric oxide has the Janus-faced effect by protecting vascular damage caused by AST while being a reactive nitrogen species (RNS) which act together with ROS to damage cells. Therefore, in the second section we discuss mitochondrial ATP-sensitive K(+) channels, which regulate mitochondrial ion transport to maintain mitochondrial physiology, involved in the regulation of ROS/RNS production and their influence on AST/cardiovascular diseases (CVD). Through this review, we can further appreciate the multi-regulatory functions of the mitochondria involved in AST development. The understanding of these related mechanisms will benefit drug development in treating AST/CVD through targeted biofunctions of mitochondria.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Jui-Chih Chang, Wei-Ting Lin, Chin-San Liu, Department of Neurology, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan, China
| | | | | | | |
Collapse
|
11
|
Tziomalos K, Hare JM. Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. FRONT BIOSCI-LANDMRK 2009; 14:237-262. [PMID: 19273066 PMCID: PMC4745900 DOI: 10.2741/3243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Emerging evidence supports the importance of nitroso-redox balance in the cardiovascular system. Xanthine oxidoreductase (XOR) is a major oxidative enzyme and increased XOR activity, leading to both increased production of reactive oxygen species and uric acid, is implicated in heart failure. Within the heart, XOR activity stimulates cardiomyocyte hypertrophy, apoptosis, and impairs matrix structure. The underpinnings of these derangements can be linked not solely to oxidative stress, but may also involve the process of nitroso-redox imbalance. In this regard, XOR interacts with nitric oxide signaling at numerous levels, including a direct protein-protein interaction with neuronal nitric oxide synthase (NOS1) in the sarcoplasmic reticulum. Deficiency or translocation of NOS1 away from this microdomain leads to increased activity of XOR, which in turn impairs excitation-contraction coupling and myofilament calcium sensitivity. There is a mounting abundance of preclinical data supporting beneficial effects of inhibiting XOR, but translation to the clinic continues to be incomplete. A growing understanding of XOR and its role in nitroso-redox imbalance has great potential to lead to improved pathophysiologic insights and possibly therapeutic advances.
Collapse
Affiliation(s)
- Konstantinos Tziomalos
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
12
|
Burnett AL, Musicki B, Jin L, Bivalacqua TJ. Nitric oxide/redox-based signalling as a therapeutic target for penile disorders. Expert Opin Ther Targets 2006; 10:445-57. [PMID: 16706684 DOI: 10.1517/14728222.10.3.445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative and/or nitrosative stress is implicated in the pathogeneses of assorted penile disorders of clinical significance, notably erectile dysfunction, priapism and penile fibrosis. It is becoming increasingly recognised that the generation and activity of reactive oxygen and nitrogen species in the penis influence vascular homeostasis of this organ, with adverse effects exerted at cellular and molecular levels. Furthermore, these elements may interact with molecular signalling pathways operating in the penis, modulating their functional roles. This interaction in particular suggests that by accessing molecular targets associated with oxidative/nitrosative stress in the penis, new pharmacotherapeutic approaches may be developed to promote normal erectile ability and preserve erectile tissue health. This notion pertains to, but also extends beyond, interventions which predictably target components of the nitric oxide-based signal transduction pathway for the on-demand treatment of erectile dysfunction. The next line of pharmaceuticals for disorders of the penis, in general, may well spawn from an integrative understanding of the complex regulatory interactions influenced by, as well as influencing nitric oxide signalling in this organ.
Collapse
Affiliation(s)
- Arthur L Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-2411, USA.
| | | | | | | |
Collapse
|