1
|
Shi X, Fedulova A, Kotova E, Maluchenko N, Armeev G, Chen Q, Prasanna C, Sivkina A, Feofanov A, Kirpichnikov M, Nordensköld L, Shaytan A, Studitsky V. Histone tetrasome dynamics affects chromatin transcription. Nucleic Acids Res 2025; 53:gkaf356. [PMID: 40304183 PMCID: PMC12041859 DOI: 10.1093/nar/gkaf356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer microscopy, and nuclear magnetic resonance spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU–BIT University, No. 1, International University Park Road, Longgang District, Shenzhen, Guangdong Province 518172, China
| | | | - Elena Y Kotova
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | | | - Grigoriy A Armeev
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Alexey V Feofanov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Lars Nordensköld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexey K Shaytan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Computer Science, HSE University, 109028 Moscow, Russia
| | - Vasily M Studitsky
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| |
Collapse
|
2
|
Jing X, Zhang N, Zhou X, Chen P, Gong J, Zhang K, Wu X, Cai W, Ye BC, Hao P, Zhao GP, Yang S, Li X. Creating a bacterium that forms eukaryotic nucleosome core particles. Nat Commun 2024; 15:8283. [PMID: 39333491 PMCID: PMC11436726 DOI: 10.1038/s41467-024-52484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The nucleosome is one of the hallmarks of eukaryotes, a dynamic platform that supports many critical functions in eukaryotic cells. Here, we engineer the in vivo assembly of the nucleosome core in the model bacterium Escherichia coli. We show that bacterial chromosome DNA and eukaryotic histones can assemble in vivo to form nucleosome complexes with many features resembling those found in eukaryotes. The formation of nucleosomes in E. coli was visualized with atomic force microscopy and using tripartite split green fluorescent protein. Under a condition that moderate histones expression was induced at 1 µM IPTG, the nucleosome-forming bacterium is viable and has sustained growth for at least 110 divisions in longer-term growth experiments. It exhibits stable nucleosome formation, a consistent transcriptome across passages, and reduced growth fitness under stress conditions. In particular, the nucleosome arrays in E. coli genic regions have profiles resembling those in eukaryotic cells. The observed compatibility between the eukaryotic nucleosome and the bacterial chromosome machinery may reflect a prerequisite for bacteria-archaea union, providing insight into eukaryogenesis and the origin of the nucleosome.
Collapse
Grants
- This work was supported in part by the National Natural Science Foundation of China (32393971 awarded to X.J., 92451303 and 32270719 awarded to X.L., 32200093 awarded to P.C.), the National Key R&D Program of China (2023ZD04073 awarded to X.L.), the National Science and Technology Major Projects (2018YFA0903700 awarded to X.J., 2019YFA0904600 awarded to Yan Zhu), and the Strategic Projects of the Chinese Academy of Sciences (XDA24010403 awarded to X.L.). We thank Fan Gong at the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, CAS, for technical support with AFM experiments, and Yuan Yuan Gao, Shanshan Wang, Lianyan Jing, and Xiaoyan Xu at the core facility of the Center for Excellence in Molecular Plant Sciences (CEMPS) for assistance with LC-MS/MS experiments.
Collapse
Affiliation(s)
- Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Gong
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Cai
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Hao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Shi X, Fedulova AS, Kotova EY, Maluchenko NV, Armeev GA, Chen Q, Prasanna C, Sivkina AL, Feofanov AV, Kirpichnikov MP, Nordensköld L, Shaytan AK, Studitsky VM. Histone Tetrasome Dynamics Affects Chromatin Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604164. [PMID: 39071396 PMCID: PMC11275759 DOI: 10.1101/2024.07.18.604164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer (spFRET) microscopy and NMR spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
|
4
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
5
|
Nagae F, Brandani GB, Takada S, Terakawa T. The lane-switch mechanism for nucleosome repositioning by DNA translocase. Nucleic Acids Res 2021; 49:9066-9076. [PMID: 34365508 PMCID: PMC8450081 DOI: 10.1093/nar/gkab664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome. However, the molecular mechanism of the downstream repositioning remains unclear. In this study, we identified the lane-switch mechanism for downstream repositioning with molecular dynamics simulations and validated it with restriction enzyme digestion assays and deep sequencing assays. In this mechanism, after a translocase unwraps nucleosomal DNA up to the site proximal to the dyad, the remaining wrapped DNA switches its binding lane to that vacated by the unwrapping, and the downstream DNA rewraps, completing downstream repositioning. This mechanism may have broad implications for transcription through nucleosomes, histone recycling, and nucleosome remodeling.
Collapse
Affiliation(s)
- Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
6
|
Wolff MR, Schmid A, Korber P, Gerland U. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. eLife 2021; 10:58394. [PMID: 33666171 PMCID: PMC8004102 DOI: 10.7554/elife.58394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.
Collapse
Affiliation(s)
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ulrich Gerland
- Department of Physics, Technical University of Munich, Garching, Germany
| |
Collapse
|
7
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
8
|
Rescuing Replication from Barriers: Mechanistic Insights from Single-Molecule Studies. Mol Cell Biol 2019; 39:MCB.00576-18. [PMID: 30886122 DOI: 10.1128/mcb.00576-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To prevent replication failure due to fork barriers, several mechanisms have evolved to restart arrested forks independent of the origin of replication. Our understanding of these mechanisms that underlie replication reactivation has been aided through unique dynamic perspectives offered by single-molecule techniques. These techniques, such as optical tweezers, magnetic tweezers, and fluorescence-based methods, allow researchers to monitor the unwinding of DNA by helicase, nucleotide incorporation during polymerase synthesis, and replication fork progression in real time. In addition, they offer the ability to distinguish DNA intermediates after obstacles to replication at high spatial and temporal resolutions, providing new insights into the replication reactivation mechanisms. These and other highlights of single-molecule techniques and remarkable studies on the recovery of the replication fork from barriers will be discussed in this review.
Collapse
|
9
|
Chang HW, Hsieh FK, Patel SS, Studitsky VM. Time-resolved analysis of transcription through chromatin. Methods 2019; 159-160:90-95. [PMID: 30707952 DOI: 10.1016/j.ymeth.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
During transcription along nucleosomal DNA, RNA polymerase II (Pol II) pauses at multiple positions and induces formation of multiple intermediates that aid in maintaining proper chromatin structure. To describe the kinetics of this multiple-step reaction, we utilized a computational model-based approach and KinTek Explorer software to analyze the time courses. Here we describe the stepwise protocol for analysis of the kinetics of transcription through a nucleosome that provides the rate constants for each step of this complex process. We also present an example where this time-resolved approach was applied to study the mechanism of histone chaperone FACT action during Pol II transcription through a single nucleosome by comparing the rate constants derived in the presence or in the absence of FACT.
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fu-Kai Hsieh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Smita S Patel
- Department of Biochemistry & Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
10
|
Abstract
Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Grover
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada;
| | - Jonathon S Asa
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
11
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
12
|
Madamba EV, Berthet EB, Francis NJ. Inheritance of Histones H3 and H4 during DNA Replication In Vitro. Cell Rep 2018; 21:1361-1374. [PMID: 29091772 DOI: 10.1016/j.celrep.2017.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/24/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Nucleosomes are believed to carry epigenetic information through the cell cycle, including through DNA replication. It has been known for decades that parental histones are reassembled on newly replicated chromatin, but the mechanisms underlying histone inheritance and dispersal during DNA replication are not fully understood. We monitored the fate of histones H3 or H4 from a single nucleosome through DNA replication in two in vitro systems. In the SV40 system, histones assembled on a single nucleosome positioning sequence can be inherited by their own daughter DNA but are dispersed from their original location. In Xenopus laevis extracts, histones are dynamic, and nucleosomes are repositioned independent of and prior to DNA replication. Nevertheless, a high fraction of histones H3 and H4 that are inherited through DNA replication remains near its starting location. Thus, inheritance of histone proteins and their dispersal can be mechanistically uncoupled.
Collapse
Affiliation(s)
- Egbert Vincent Madamba
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Ellora Bellows Berthet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Nicole Jane Francis
- Institut de recherches clinique de Montréal (IRCM) and Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC H2W 1R7 Canada.
| |
Collapse
|
13
|
Kitevski-LeBlanc JL, Yuwen T, Dyer PN, Rudolph J, Luger K, Kay LE. Investigating the Dynamics of Destabilized Nucleosomes Using Methyl-TROSY NMR. J Am Chem Soc 2018; 140:4774-4777. [DOI: 10.1021/jacs.8b00931] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julianne L. Kitevski-LeBlanc
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tairan Yuwen
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Pamela N. Dyer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Johannes Rudolph
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Lewis E. Kay
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
14
|
Chang HW, Studitsky VM. Chromatin replication: TRANSmitting the histone code. JOURNAL OF NATURE AND SCIENCE 2017; 3:e322. [PMID: 28393112 PMCID: PMC5384335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during replication. These studies suggest new possible mechanisms for transmitting the histone code to next generations of cells.
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vasily M. Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Biology Faculty, Lomonosov Moscow State University; Moscow, Russia
| |
Collapse
|