1
|
Thorp HH. Editorial Retraction. SCIENCE ADVANCES 2024; 10:eads9451. [PMID: 39259782 PMCID: PMC11421578 DOI: 10.1126/sciadv.ads9451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
2
|
Thorp HH. Editorial expression of concern. SCIENCE ADVANCES 2024; 10:eadp1930. [PMID: 38478625 PMCID: PMC10936945 DOI: 10.1126/sciadv.adp1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
|
3
|
Rein HL, Bernstein KA. Finding significance: New perspectives in variant classification of the RAD51 regulators, BRCA2 and beyond. DNA Repair (Amst) 2023; 130:103563. [PMID: 37651978 PMCID: PMC10529980 DOI: 10.1016/j.dnarep.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
For many individuals harboring a variant of uncertain functional significance (VUS) in a homologous recombination (HR) gene, their risk of developing breast and ovarian cancer is unknown. Integral to the process of HR are BRCA1 and regulators of the central HR protein, RAD51, including BRCA2, PALB2, RAD51C and RAD51D. Due to advancements in sequencing technology and the continued expansion of cancer screening panels, the number of VUS identified in these genes has risen significantly. Standard practices for variant classification utilize different types of predictive, population, phenotypic, allelic and functional evidence. While variant analysis is improving, there remains a struggle to keep up with demand. Understanding the effects of an HR variant can aid in preventative care and is critical for developing an effective cancer treatment plan. In this review, we discuss current perspectives in the classification of variants in the breast and ovarian cancer genes BRCA1, BRCA2, PALB2, RAD51C and RAD51D.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Lopez-Perez G, Wijayatunge R, McCrum KB, Holmstrom SR, Mgbemena VE, Ross TS. BRCA1 and TP53 codeficiency causes a PARP inhibitor-sensitive erythroproliferative neoplasm. JCI Insight 2022; 7:158257. [PMID: 36346676 PMCID: PMC9869974 DOI: 10.1172/jci.insight.158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system. We found that Brca1 and Trp53 codeficiency led to a highly penetrant erythroproliferative disorder that is characterized by hepatosplenomegaly and by expanded megakaryocyte erythroid progenitor (MEP) and immature erythroid blast populations. The expanded erythroid progenitor populations in both BM and spleen had the capacity to transmit the disease into secondary mouse recipients, suggesting that Brca1 and Trp53 codeficiency provides a murine model of hematopoietic neoplasia. This Brca1/Trp53 model replicated Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib sensitivity seen in existing Brca1/Trp53 breast cancer models and had the benefits of monitoring disease progression and drug responses via peripheral blood analyses without sacrificing experimental animals. In addition, this erythroid neoplasia developed much faster than murine breast cancer, allowing for increased efficiency of future preclinical studies.
Collapse
|
5
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Bunch H, Jeong J, Kang K, Jo DS, Cong ATQ, Kim D, Kim D, Cho DH, Lee YM, Chen BPC, Schellenberg MJ, Calderwood SK. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ. Open Biol 2021; 11:210221. [PMID: 34610268 PMCID: PMC8492178 DOI: 10.1098/rsob.210221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea,School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehyeon Jeong
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Anh T. Q. Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donguk Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
The BRCA1/BARD1 ubiquitin ligase and its substrates. Biochem J 2021; 478:3467-3483. [PMID: 34591954 DOI: 10.1042/bcj20200864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.
Collapse
|
8
|
Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Nature 2021; 596:438-443. [PMID: 34321665 PMCID: PMC8680157 DOI: 10.1038/s41586-021-03716-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
Collapse
|
9
|
Raimundo L, Paterna A, Calheiros J, Ribeiro J, Cardoso DSP, Piga I, Neto SJ, Hegan D, Glazer PM, Indraccolo S, Mulhovo S, Costa JL, Ferreira MJU, Saraiva L. BBIT20 inhibits homologous DNA repair with disruption of the BRCA1-BARD1 interaction in breast and ovarian cancer. Br J Pharmacol 2021; 178:3627-3647. [PMID: 33899955 DOI: 10.1111/bph.15506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Advances in the treatment of triple-negative breast and ovarian cancer remain challenging. In particular, resistance to the available therapy, by restoring or overexpressing the DNA repair machinery, has often been reported. New strategies to improve the therapeutic outcomes of these cancers are needed. Herein, we disclose the dregamine 5-bromo-pyridin-2-ylhydrazone (BBIT20), a natural monoterpene indole alkaloid derivative, as an inhibitor of homologous DNA repair. EXPERIMENTAL APPROACH To unveil BBIT20 antitumour activity and underlying molecular mechanism of action, two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived cell lines and xenograft mouse models were used. KEY RESULTS BBIT20 disrupted the BRCA1-BARD1 interaction, triggering nuclear-to-cytoplasmic BRCA1 translocation, cell cycle arrest and downregulation of homologous DNA repair-related genes and proteins, with subsequent enhancement of DNA damage, reactive oxygen species generation and apoptosis, in triple-negative breast and ovarian cancer cells. BBIT20 also displayed pronounced antitumour activity in patient-derived cells and xenograft mouse models of ovarian cancer, with low toxicity in non-malignant cells and undetectable side effects in mice. Additionally, it did not induce resistance in triple-negative breast and ovarian cancer and displayed marked synergistic effects with cisplatin and olaparib (a poly [ADP-ribose] polymerase inhibitor), on 2D and 3D models of these cancer cells. CONCLUSION AND IMPLICATIONS These findings add an inhibitor of the BRCA1-BARD1 interaction to the list of DNA-damaging agents. Importantly, either as a single agent or in combination therapy, BBIT20 reveals great potential in the personalized treatment of aggressive and resistant cancers, particularly triple-negative breast and advanced ovarian cancer.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Angela Paterna
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Joana Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - David S P Cardoso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Ilaria Piga
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV, IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, 35128, Italy
| | - Susana Junqueira Neto
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, 4200-135, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, Porto, 4200-135, Portugal.,Faculty of Medicine, University of Porto, Praça de Gomes Teixeira, Porto, 4099-002, Portugal
| | - Denise Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, CT06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, CT06511, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, CT06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, CT06511, USA
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV, IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, 35128, Italy
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências (CEMEC), Faculty of Natural Sciences and Mathematics, Pedagogical University, Maputo, 21402161, Mozambique
| | - José Luís Costa
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, 4200-135, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, Porto, 4200-135, Portugal.,Faculty of Medicine, University of Porto, Praça de Gomes Teixeira, Porto, 4099-002, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| |
Collapse
|
10
|
Panigrahi R, Glover JNM. Structural insights into DNA double-strand break signaling. Biochem J 2021; 478:135-156. [PMID: 33439989 DOI: 10.1042/bcj20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
11
|
Raimundo L, Ramos H, Loureiro JB, Calheiros J, Saraiva L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim Biophys Acta Rev Cancer 2020; 1873:188339. [PMID: 31917206 DOI: 10.1016/j.bbcan.2020.188339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Sun Y, McCorvie TJ, Yates LA, Zhang X. Structural basis of homologous recombination. Cell Mol Life Sci 2020; 77:3-18. [PMID: 31748913 PMCID: PMC6957567 DOI: 10.1007/s00018-019-03365-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR) is a pathway to faithfully repair DNA double-strand breaks (DSBs). At the core of this pathway is a DNA recombinase, which, as a nucleoprotein filament on ssDNA, pairs with homologous DNA as a template to repair the damaged site. In eukaryotes Rad51 is the recombinase capable of carrying out essential steps including strand invasion, homology search on the sister chromatid and strand exchange. Importantly, a tightly regulated process involving many protein factors has evolved to ensure proper localisation of this DNA repair machinery and its correct timing within the cell cycle. Dysregulation of any of the proteins involved can result in unchecked DNA damage, leading to uncontrolled cell division and cancer. Indeed, many are tumour suppressors and are key targets in the development of new cancer therapies. Over the past 40 years, our structural and mechanistic understanding of homologous recombination has steadily increased with notable recent advancements due to the advances in single particle cryo electron microscopy. These have resulted in higher resolution structural models of the signalling proteins ATM (ataxia telangiectasia mutated), and ATR (ataxia telangiectasia and Rad3-related protein), along with various structures of Rad51. However, structural information of the other major players involved, such as BRCA1 (breast cancer type 1 susceptibility protein) and BRCA2 (breast cancer type 2 susceptibility protein), has been limited to crystal structures of isolated domains and low-resolution electron microscopy reconstructions of the full-length proteins. Here we summarise the current structural understanding of homologous recombination, focusing on key proteins in recruitment and signalling events as well as the mediators for the Rad51 recombinase.
Collapse
Affiliation(s)
- Yueru Sun
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Thomas J McCorvie
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Luke A Yates
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Alden NA, Varano AC, Dearnaley WJ, Solares MJ, Luqiu WY, Liang Y, Sheng Z, McDonald SM, Damiano J, McConnell J, Dukes MJ, Kelly DF. Cryo-EM-On-a-Chip: Custom-Designed Substrates for the 3D Analysis of Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900918. [PMID: 30963664 PMCID: PMC6534443 DOI: 10.1002/smll.201900918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Indexed: 05/04/2023]
Abstract
The fight against human disease requires a multidisciplinary scientific approach. Applying tools from seemingly unrelated areas, such as materials science and molecular biology, researchers can overcome long-standing challenges to improve knowledge of molecular pathologies. Here, custom-designed substrates composed of silicon nitride (SiN) are used to study the 3D attributes of tumor suppressor proteins that function in DNA repair events. New on-chip preparation strategies enable the isolation of native protein complexes from human cancer cells. Combined techniques of cryo-electron microscopy (EM) and molecular modeling reveal a new modified form of the p53 tumor suppressor present in aggressive glioblastoma multiforme cancer cells. Taken together, the findings provide a radical new design for cryo-EM substrates to evaluate the structures of disease-related macromolecules.
Collapse
Affiliation(s)
- Nick A Alden
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - A Cameron Varano
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Dearnaley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Maria J Solares
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - William Y Luqiu
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Yanping Liang
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Sarah M McDonald
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - John Damiano
- Application Science, Protochips Inc., Morrisville, NC, 27560, USA
| | | | - Madeline J Dukes
- Application Science, Protochips Inc., Morrisville, NC, 27560, USA
| | - Deborah F Kelly
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Liang Y, Dearnaley WJ, Alden NA, Solares MJ, Gilmore BL, Pridham KJ, Varano AC, Sheng Z, Alli E, Kelly DF. Correcting errors in the BRCA1 warning system. DNA Repair (Amst) 2018; 73:120-128. [PMID: 30503669 DOI: 10.1016/j.dnarep.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Given its important role in human health and disease, remarkably little is known about the full-length three-dimensional (3D) molecular architecture of the breast cancer type 1 susceptibility protein (BRCA1), or its mechanisms to engage the tumor suppressor, TP53 (p53). Here, we show how a prevalent cancer-related mutation in the C-terminal region of the full-length protein, BRCA15382insC, affects its structural properties, yet can be biochemically corrected to restore its functional capacity. As a downstream consequence of restoring the ubiquitin ligase activity of mutated BRCA15382insC, the DNA repair response of p53 was enhanced in cellular extracts naturally deficient in BRCA1 protein expression. Complementary structural insights of p53 tetramers bound to DNA in different stage of the repair process support these biochemical findings in the context of human cancer cells. Equally important, we show how this knowledge can be used to lower the viability of breast cancer cells by modulating the stability of the BRCA1 protein and its associated players.
Collapse
Affiliation(s)
- Yanping Liang
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - William J Dearnaley
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nick A Alden
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Maria J Solares
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brian L Gilmore
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Kevin J Pridham
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A Cameron Varano
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhi Sheng
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Elizabeth Alli
- Comprehensive Cancer Center, Wake Forest School of Medicine, Wake Forest, NC, 27157, USA
| | - Deborah F Kelly
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|