1
|
Ivanova IA, Valueva AA, Ershova MO, Pleshakova TO. AFM for Studying the Functional Activity of Enzymes. Biomolecules 2025; 15:574. [PMID: 40305350 PMCID: PMC12025057 DOI: 10.3390/biom15040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The conventional approach to investigating enzyme systems involves the simultaneous investigation of a large number of molecules and observing ensemble-averaged properties. However, modern science allows us to study the properties of single molecules and to obtain data on biochemical systems at a fundamentally new level, significantly expanding our understanding of the mechanisms of biochemical processes. Imaging of single biomolecules with high spatial and temporal resolution is among such modern research tools. To effectively image the individual steps or intermediates of biochemical reactions in single-molecule experiments, we need to develop a methodology for data acquisition and analysis. Its development will make it possible to solve the problem of separating the static and dynamic disorder present in the parameters identified by traditional proteomic methods. Such a methodology may be based on AFM imaging, the high-resolution microscopic visualization of enzymes. This review focuses on this direction of research, including the relevant methodological and practical solutions related to the potential of developing a single-molecule approach to the study of enzyme systems using AFM-based techniques. We focus on the results of enzyme reaction studies, as there are still few such studies, as opposed to the AFM studies of the mechanical properties of individual enzyme molecules.
Collapse
Affiliation(s)
| | | | | | - Tatiana O. Pleshakova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10, 119121 Moscow, Russia; (I.A.I.); (A.A.V.); (M.O.E.)
| |
Collapse
|
2
|
Suzuki K, Goto Y, Otomo A, Shimizu K, Abe S, Moriyama K, Yasuda S, Hashimoto Y, Kurushima J, Mikuriya S, Imai FL, Adachi N, Kawasaki M, Sato Y, Ogasawara S, Iwata S, Senda T, Ikeguchi M, Tomita H, Iino R, Moriya T, Murata T. Na +-V-ATPase inhibitor curbs VRE growth and unveils Na + pathway structure. Nat Struct Mol Biol 2025; 32:450-458. [PMID: 39572733 DOI: 10.1038/s41594-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/03/2024] [Indexed: 03/20/2025]
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) is a major cause of nosocomial infections, particularly endocarditis and sepsis. With the diminishing effectiveness of antibiotics against VRE, new antimicrobial agents are urgently needed. Our previous research demonstrated the crucial role of Na+-transporting V-ATPase in Enterococcus hirae for growth under alkaline conditions. In this study, we identified a compound, V-161, from 70,600 compounds, which markedly inhibits E. hirae V-ATPase activity. V-161 not only inhibits VRE growth in alkaline conditions but also significantly suppresses VRE colonization in the mouse small intestine. Furthermore, we unveiled the high-resolution structure of the membrane VO part due to V-161 binding. V-161 binds to the interface of the c-ring and a-subunit, constituting the Na+ transport pathway in the membrane, thereby halting its rotation. This structural insight presents potential avenues for developing therapeutic agents for VRE treatment and elucidates the Na+ transport pathway and mechanism.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yoshiyuki Goto
- Membrane Protein Research Center, Chiba University, Chiba, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Kouki Shimizu
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Shohei Abe
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Sho Mikuriya
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fabiana L Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan.
- Membrane Protein Research Center, Chiba University, Chiba, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
3
|
Zheng L, Shi S, Sun X, Lu M, Liao Y, Zhu S, Zhang H, Pan Z, Fang P, Zeng Z, Li H, Li Z, Xue W, Zhu F. MoDAFold: a strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics. Brief Bioinform 2024; 25:bbae006. [PMID: 38305456 PMCID: PMC10835750 DOI: 10.1093/bib/bbae006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
Protein structure prediction is a longstanding issue crucial for identifying new drug targets and providing a mechanistic understanding of protein functions. To enhance the progress in this field, a spectrum of computational methodologies has been cultivated. AlphaFold2 has exhibited exceptional precision in predicting wild-type protein structures, with performance exceeding that of other methods. However, predicting the structures of missense mutant proteins using AlphaFold2 remains challenging due to the intricate and substantial structural alterations caused by minor sequence variations in the mutant proteins. Molecular dynamics (MD) has been validated for precisely capturing changes in amino acid interactions attributed to protein mutations. Therefore, for the first time, a strategy entitled 'MoDAFold' was proposed to improve the accuracy and reliability of missense mutant protein structure prediction by combining AlphaFold2 with MD. Multiple case studies have confirmed the superior performance of MoDAFold compared to other methods, particularly AlphaFold2.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
| | - Yang Liao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Sisi Zhu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Pan Y, Zhan J, Jiang Y, Xia D, Scheuring S. A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1. Nat Commun 2023; 14:6369. [PMID: 37821516 PMCID: PMC10567702 DOI: 10.1038/s41467-023-41806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Bcs1, a homo-heptameric transmembrane AAA-ATPase, facilitates folded Rieske iron-sulfur protein translocation across the inner mitochondrial membrane. Structures in different nucleotide states (ATPγS, ADP, apo) provided conformational snapshots, but the kinetics and structural transitions of the ATPase cycle remain elusive. Here, using high-speed atomic force microscopy (HS-AFM) and line scanning (HS-AFM-LS), we characterized single-molecule Bcs1 ATPase cycling. While the ATP conformation had ~5600 ms lifetime, independent of the ATP-concentration, the ADP/apo conformation lifetime was ATP-concentration dependent and reached ~320 ms at saturating ATP-concentration, giving a maximum turnover rate of 0.17 s-1. Importantly, Bcs1 ATPase cycle conformational changes occurred in concert. Furthermore, we propose that the transport mechanism involves opening the IMS gate through energetically costly straightening of the transmembrane helices, potentially driving rapid gate resealing. Overall, our results establish a concerted ATPase cycle mechanism in Bcs1, distinct from other AAA-ATPases that use a hand-over-hand mechanism.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Jingyu Zhan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
6
|
Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. ACS CENTRAL SCIENCE 2022; 8:915-925. [PMID: 35912346 PMCID: PMC9336149 DOI: 10.1021/acscentsci.1c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of rotatory catalysis in ATP-hydrolyzing molecular motors remains an unresolved puzzle in biological energy transfer. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, knowledge on how the coupling between the chemical and mechanical steps within motors enforces directional rotatory movements remains fragmentary. Even more contentious is to pinpoint the rate-limiting step of a multistep rotation process. Here, using vacuolar or V1-type hexameric ATPase as an exemplary rotational motor, we present a model of the complete 4-step conformational cycle involved in rotatory catalysis. First, using X-ray crystallography, a new intermediate or "dwell" is identified, which enables the release of an inorganic phosphate (or Pi) after ATP hydrolysis. Using molecular dynamics simulations, this new dwell is placed in a sequence with three other crystal structures to derive a putative cyclic rotation path. Free-energy simulations are employed to estimate the rate of the hexameric protein transformations and delineate allosteric effects that allow new reactant ATP entry only after hydrolysis product exit. An analysis of transfer entropy brings to light how the side-chain-level interactions transcend into larger-scale reorganizations, highlighting the role of the ubiquitous arginine-finger residues in coupling chemical and mechanical information. An inspection of all known rates encompassing the 4-step rotation mechanism implicates the overcoming of the ADP interactions with V1-ATPase to be the rate-limiting step of motor action.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center
for Development of Therapeutics, Broad Institute
of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Chitrak Gupta
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Kano Suzuki
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Chun Kit Chan
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Takeshi Murata
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Structure
Biology Research Center, Institute of Materials
Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 1-1 Oho, Ibaraki 305-0801, Japan
| | - Abhishek Singharoy
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
7
|
Ogasawara S, Suzuki K, Naruchi K, Nakamura S, Shimabukuro J, Tsukahara N, Kaneko MK, Kato Y, Murata T. Crystal structure of an anti-podoplanin antibody bound to a disialylated O-linked glycopeptide. Biochem Biophys Res Commun 2020; 533:57-63. [PMID: 32921414 DOI: 10.1016/j.bbrc.2020.08.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Podoplanin (PDPN) is a highly O-glycosylated glycoprotein that is utilized as a specific lymphatic endothelial marker under pathophysiological conditions. We previously developed an anti-human PDPN (hPDPN) monoclonal antibody (mAb), clone LpMab-3, which recognizes the epitope, including both the peptides and the attached disialy-core-l (NeuAcα2-3Galβl-3 [NeuAcα2-6]GalNAcαl-O-Thr) structure at the Thr76 residue in hPDPN. However, it is unclear if the mAb binds directly to both the peptides and glycans. In this study, we synthesized the binding epitope region of LpMab-3 that includes the peptide (-67LVATSVNSV-T-GIRIEDLP84-) possessing a disialyl-core-1 O-glycan at Thr76, and we determined the crystal structure of the LpMab-3 Fab fragment that was bound to the synthesized glycopeptide at a 2.8 Å resolution. The six amino acid residues and two sialic acid residues are directly associated with four complementarity-determining regions (CDRs; H1, H2, H3, and L3) and four CDRs (H2, H3, L1, and L3), respectively. These results suggest that IgG is advantageous for generating binders against spacious epitopes such as glycoconjugates.
Collapse
Affiliation(s)
- Satoshi Ogasawara
- Graduate School of Science, Chiba University, Chiba, Japan; Molecular Chirality Research Center, Chiba University, Chiba, Japan.
| | - Kano Suzuki
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd., Sapporo, Japan
| | - Seiwa Nakamura
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | | | - Mika K Kaneko
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Sendai, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Takeshi Murata
- Graduate School of Science, Chiba University, Chiba, Japan; Molecular Chirality Research Center, Chiba University, Chiba, Japan.
| |
Collapse
|
8
|
Okumura M, Noi K, Inaba K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr Opin Struct Biol 2020; 66:49-57. [PMID: 33176263 DOI: 10.1016/j.sbi.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Time-resolved single-molecule observations by high-speed atomic force microscopy (HS-AFM), have greatly advanced our understanding of how proteins operate to fulfill their unique functions. Using this device, we succeeded in visualizing two members of the protein disulfide isomerase family (PDIs) that act to catalyze oxidative folding and reductive unfolding in the endoplasmic reticulum (ER). ERdj5, an ER-resident disulfide reductase that promotes ER-associated degradation, reduces nonnative disulfide bonds of misfolded proteins utilizing the dynamics of its N-terminal and C-terminal clusters. With unfolded substrates, canonical PDI assembles to form a face-to-face dimer with a central hydrophobic cavity and multiple redox-active sites to accelerate oxidative folding inside the cavity. Altogether, PDIs exert highly dynamic mechanisms to ensure the protein quality control in the ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Kentaro Noi
- Institute of Nanoscience Design, Osaka University, Machikaneyamatyou 1-3, Toyonaka 560-8531, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
9
|
Arai S, Maruyama S, Shiroishi M, Yamato I, Murata T. An affinity change model to elucidate the rotation mechanism of V 1-ATPase. Biochem Biophys Res Commun 2020; 533:1413-1418. [PMID: 33097182 DOI: 10.1016/j.bbrc.2020.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
V-ATPases are ubiquitous proton-transporting ATPases of eukaryotic and prokaryotic membranes that utilize energy from ATP hydrolysis. The hydrophilic catalytic part called V1-ATPase is composed of a ring-shaped hexametric A3B3 complex and a central DF shaft. We previously proposed a rotation mechanism of the Enterococcus hirae V1-ATPase based on the crystal structures of the V1 and A3B3 complexes. However, the driving force that induces the conformational changes of A3B3 and rotation of the DF shaft remains unclear. In this study, we investigated the binding affinity changes between subunits of V1-ATPase by surface plasmon resonance analysis. The binding of ATP to subunit A was found to considerably increase the affinity between the A and B subunits, and thereby ATP binding contributes to forming the A1B1 tight conformation. Furthermore, the DF shaft bound to the reconstituted A1B1 complex with high affinity, suggesting that the tight A1B1 complex is a major binding unit of the shaft in the A3B3 ring complex. Based on these results, we propose that rotation of the V1-ATPase is driven by affinity changes between each subunit via thermal fluctuations.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan
| | - Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan.
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan; Molecular Chirality Research, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
10
|
Zhou L, Sazanov LA. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 2020; 365:365/6455/eaaw9144. [PMID: 31439765 DOI: 10.1126/science.aaw9144] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaea and eubacteria, couple ATP hydrolysis or synthesis to proton translocation across the plasma membrane using the rotary-catalysis mechanism. They belong to the V-type ATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthases in overall architecture. We solved cryo-electron microscopy structures of the intact Thermus thermophilus V/A-ATPase, reconstituted into lipid nanodiscs, in three rotational states and two substates. These structures indicate substantial flexibility between V1 and Vo in a working enzyme, which results from mechanical competition between central shaft rotation and resistance from the peripheral stalks. We also describe details of adenosine diphosphate inhibition release, V1-Vo torque transmission, and proton translocation, which are relevant for the entire V-type ATPase family.
Collapse
Affiliation(s)
- Long Zhou
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
| |
Collapse
|
11
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|