1
|
O'Brien ÁC, Hallis LJ, Regnault C, Morrison D, Blackburn G, Steele A, Daly L, Tait A, Tremblay MM, Telenko DE, Gunn J, McKay E, Mari N, Salik MA, Ascough P, Toney J, Griffin S, Whitfield P, Lee M. Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. ASTROBIOLOGY 2022; 22:1351-1362. [PMID: 36264546 PMCID: PMC9618387 DOI: 10.1089/ast.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.
Collapse
Affiliation(s)
- Áine Clare O'Brien
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- SUERC, University of Glasgow, East Kilbride, UK
| | - Lydia Jane Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Clement Regnault
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | | | - Gavin Blackburn
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Andrew Steele
- Carnegie Planets, Carnegie Science, Washington DC, USA
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Australia
- Department of Materials, University of Oxford, Oxford, UK
| | - Alastair Tait
- School of Earth, Atmosphere & Environment Monash University, Rainforest Walk Clayton, Victoria, Australia
| | - Marissa Marie Tremblay
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Darcy E.P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Jacqueline Gunn
- School of Professional Services, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| | | | - Nicola Mari
- Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Pavia, Italy
| | - Mohammad Ali Salik
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | | | - Jaime Toney
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Sammy Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Phil Whitfield
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| |
Collapse
|
2
|
Martell J, Alwmark C, Daly L, Hall S, Alwmark S, Woracek R, Hektor J, Helfen L, Tengattini A, Lee M. The scale of a martian hydrothermal system explored using combined neutron and x-ray tomography. SCIENCE ADVANCES 2022; 8:eabn3044. [PMID: 35544576 PMCID: PMC9094668 DOI: 10.1126/sciadv.abn3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Nakhlite meteorites are igneous rocks from Mars that were aqueously altered ~630 million years ago. Hydrothermal systems on Earth are known to provide microhabitats; knowledge of the extent and duration of these systems is crucial to establish whether they could sustain life elsewhere in the Solar System. Here, we explore the three-dimensional distribution of hydrous phases within the Miller Range 03346 nakhlite meteorite using nondestructive neutron and x-ray tomography to determine whether alteration is interconnected and pervasive. The results reveal discrete clusters of hydrous phases within and surrounding olivine grains, with limited interconnectivity between clusters. This implies that the fluid was localized and originated from the melting of local subsurface ice following an impact event. Consequently, the duration of the hydrous alteration was likely short, meaning that the martian crust sampled by the nakhlites could not have provided habitable environments that could harbor any life on Mars during the Amazonian.
Collapse
Affiliation(s)
- Josefin Martell
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Carl Alwmark
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney 2006, NSW, Australia
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
| | - Stephen Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden
- Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund, Sweden
| | - Sanna Alwmark
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Hektor
- LUNARC, Centre for Scientific and Technical Computing, Lund University, Lund, Sweden
- Department of Materials Science and Applied Mathematics, Malmö University, Malmö, Sweden
| | | | - Alessandro Tengattini
- Institut Laue-Langevin, Grenoble, France
- Universite Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, France
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Laurent H, Baker DL, Soper AK, Ries ME, Dougan L. Bridging Structure, Dynamics, and Thermodynamics: An Example Study on Aqueous Potassium Halides. J Phys Chem B 2021; 125:12774-12786. [PMID: 34757756 DOI: 10.1021/acs.jpcb.1c06728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous salt systems are ubiquitous in all areas of life. The ions in these solutions impose important structural and dynamic perturbations to water. In this study, we employ a combined neutron scattering, nuclear magnetic resonance, and computational modeling approach to deconstruct ion-specific perturbations to water structure and dynamics and shed light on the molecular origins of bulk thermodynamic properties of the solutions. Our approach uses the atomistic scale resolution offered to us by neutron scattering and computational modeling to investigate how the properties of particular short-ranged microenvironments within aqueous systems can be related to bulk properties of the system. We find that by considering only the water molecules in the first hydration shell of the ions that the enthalpy of hydration can be determined. We also quantify the range over which ions perturb water structure by calculating the average enthalpic interaction between a central halide anion and the surrounding water molecules as a function of distance and find that the favorable anion-water enthalpic interactions only extend to ∼4 Å. We further validate this by showing that ions induce structure in their solvating water molecules by examining the distribution of dipole angles in the first hydration shell of the ions but that this perturbation does not extend into the bulk water. We then use these structural findings to justify mathematical models that allow us to examine perturbations to rotational and diffusive dynamics in the first hydration shell around the potassium halide ions from NMR measurements. This shows that as one moves down the halide series from fluorine to iodine, and ionic charge density is therefore reduced, that the enthalpy of hydration becomes less negative. The first hydration shell also becomes less well structured, and rotational and diffusive motions of the hydrating water molecules are increased. This reduction in structure and increase in dynamics are likely the origin of the previously observed increased entropy of hydration as one moves down the halide series. These results also suggest that simple monovalent potassium halide ions induce mostly local perturbations to water structure and dynamics.
Collapse
Affiliation(s)
- Harrison Laurent
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Daniel L Baker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.,Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
4
|
Treiman AH. Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. ASTROBIOLOGY 2021; 21:940-953. [PMID: 33857382 DOI: 10.1089/ast.2020.2306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian meteorite ALH 84001 formed before ∼4.0 Ga, so it could have preserved information about habitability on early Mars and habitability since then. ALH 84001 is particularly important as it contains carbonate (and other) minerals that were deposited by liquid water, raising the chance that they may have formed in a habitable environment. Despite vigorous efforts from the scientific community, there is no accepted evidence that ALH 84001 contains traces or markers of ancient martian life-all the purported signs have been shown to be incorrect or ambiguous. However, the meteorite provides evidence for three distinct episodes of potentially habitable environments on early Mars. First is evidence that the meteorite's precursors interacted with clay-rich material, formed approximately at 4.2 Ga. Second is that igneous olivine crystals in ALH 84001 were partially dissolved and removed, presumably by liquid water. Third is, of course, the deposition of the carbonate globules, which occurred at ∼15-25°C and involved near-neutral to alkaline waters. The environments of olivine dissolution and carbonate deposition are not known precisely; hydrothermal and soil environments are current possibilities. By analogies with similar alteration minerals and sequences in the nakhlite martian meteorites and volcanic rocks from Spitzbergen (Norway), a hydrothermal environment is favored. As with the nakhlite alterations, those in ALH 84001 likely formed in a hydrothermal system related to a meteoroid impact event. Following deposition of the carbonates (at 3.95 Ga), ALH 84001 preserves no evidence of habitable environments, that is, interaction with water. The meteorite contains several materials (formed by impact shock at ∼3.9 Ga) that should have reacted readily with water to form hydrous silicates, but there is no evidence any formed.
Collapse
Affiliation(s)
- Allan H Treiman
- Lunar and Planetary Institute / Universities Space Research Association, Houston, Texas, USA
| |
Collapse
|
6
|
Apatite from NWA 10153 and NWA 10645—The Key to Deciphering Magmatic and Fluid Evolution History in Nakhlites. MINERALS 2019. [DOI: 10.3390/min9110695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apatites from Martian nakhlites NWA 10153 and NWA 10645 were used to obtain insight into their crystallization environment and the subsequent postcrystallization evolution path. The research results acquired using multi-tool analyses show distinctive transformation processes that were not fully completed. The crystallization history of three apatite generations (OH-bearing, Cl-rich fluorapatite as well as OH-poor, F-rich chlorapatite and fluorapatite) were reconstructed using transmission electron microscopy and geochemical analyses. Magmatic OH-bearing, Cl-rich fluorapatite changed its primary composition and evolved toward OH-poor, F-rich chlorapatite because of its interaction with fluids. Degassing of restitic magma causes fluorapatite crystallization, which shows a strong structural affinity for the last episode of system evolution. In addition to the three apatite generations, a fourth amorphous phase of calcium phosphate has been identified with Raman spectroscopy. This amorphous phase may be considered a transition phase between magmatic and hydrothermal phases. It may give insight into the dissolution process of magmatic phosphates, help in processing reconstruction, and allow to decipher mineral interactions with hydrothermal fluids.
Collapse
|