1
|
Cheng X, Li Q, Duan Y, Chen Y, Teng J, Chu S, Yang H, Wang S, Gong Q. Active fluorescent modulation for low-noise super-resolution microscopy. OPTICS LETTERS 2023; 48:2655-2658. [PMID: 37186732 DOI: 10.1364/ol.488303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Extracting the position of individual molecular probes with high precision is the basis and core of super-resolution microscopy. However, with the expectation of low-light conditions in life science research, the signal-to-noise ratio (SNR) decreases and signal extraction faces a great challenge. Here, based on temporally modulating the fluorescence emission at certain periodical patterns, we achieved super-resolution imaging with high sensitivity by largely suppressing the background noise. We propose simple bright-dim (BD) fluorescent modulation and delicate control by phase-modulated excitation. We demonstrate that the strategy can effectively enhance signal extraction in both sparsely and densely labeled biological samples, and thus improve the efficiency and precision of super-resolution imaging. This active modulation technique is generally applicable to various fluorescent labels, super-resolution techniques, and advanced algorithms, allowing a wide range of bioimaging applications.
Collapse
|
2
|
Cheng X, Wang J, Li Q, Duan Y, Chen Y, Teng J, Chu S, Yang H, Wang S, Gong Q. Enhancing Weak-Signal Extraction for Single-Molecule Localization Microscopy. J Phys Chem A 2023; 127:329-338. [PMID: 36541035 DOI: 10.1021/acs.jpca.2c05164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-molecule localization microscopy (SMLM) has been widely used in biological imaging due to its ultrahigh spatial resolution. However, due to the strategy of reducing photodamage to living cells, the fluorescence signals of emitters are usually weak and the detector noises become non-negligible, which leads to localization misalignments and signal losses, thus deteriorating the imaging capability of SMLM. Here, we propose an active modulation method to control the fluorescence of the probe emitters. It actually marks the emitters with artificial blinking character, which directly distinguishes weak signals from multiple detector noises. We demonstrated from simulations and experiments that this method improves the signal-to-noise ratio by about 10 dB over the non-modulated method and boosts the sensitivity of single-molecule localization down to -4 dB, which significantly reduces localization misalignments and signal losses in SMLM. This signal-noise decoupling strategy is generally applicable to the super-resolution system with versatile labeled probes to improve their imaging capability. We also showed its application to the densely labeled sample, showing its flexibility in super-resolution nanoscopy.
Collapse
Affiliation(s)
- Xue Cheng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing100871, China
| | - Yiqun Duan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Yan Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing100871, China
| | - Saisai Chu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| |
Collapse
|
3
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
4
|
Cheng X, Liu C, Zhang G, Liu W, Wang J, Duan Y, Chen J, Yang H, Wang S. Resolving plasmonic hotspots by label-free super-resolution microscopy. OPTICS LETTERS 2022; 47:210-213. [PMID: 35030569 DOI: 10.1364/ol.443571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The plasmonic hotspot of metal nanostructures has small dimension far beyond the optical diffraction limit. When trying to locate the hotspot using fluorescent probes, the localization is significantly distorted due to the coupling of emission and surface plasmon. A label-free technique can solve the problem, which uses hotspot emission as the native probe. We demonstrate a super-resolution microscopy investigation based on this idea. By modulating hotspot emission of crossed silver nanowires, which have a pair of plasmonic hotspots approximately 100 nm apart at the intersection, we precisely locate and separate them with nanometer precision. This label-free technique could be applied for analyzing hotspot distribution with high efficiency and precision.
Collapse
|
5
|
Chen C, Liu B, Liu Y, Liao J, Shan X, Wang F, Jin D. Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Super-Resolution Nanoscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008847. [PMID: 33864638 DOI: 10.1002/adma.202008847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Indexed: 05/22/2023]
Abstract
Point spread function (PSF) engineering by an emitter's response can code higher-spatial-frequency information of an image for microscopy to achieve super-resolution. However, complexed excitation optics or repetitive scans are needed, which explains the issues of low speed, poor stability, and operational complexity associated with the current laser scanning microscopy approaches. Here, the diverse emission responses of upconversion nanoparticles (UCNPs) are reported for super-resolution nanoscopy to improve the imaging quality and speed. The method only needs a doughnut-shaped scanning excitation beam at an appropriate power density. By collecting the four-photon emission of single UCNPs, the high-frequency information of a super-resolution image can be resolved through the doughnut-emission PSF. Meanwhile, the two-photon state of the same nanoparticle is oversaturated, so that the complementary lower-frequency information of the super-resolution image can be simultaneously collected by the Gaussian-like emission PSF. This leads to a method of Fourier-domain heterochromatic fusion, which allows the extended capability of the engineered PSFs to cover both low- and high-frequency information to yield optimized image quality. This approach achieves a spatial resolution of 40 nm, 1/24th of the excitation wavelength. This work suggests a new scope for developing nonlinear multi-color emitting probes in super-resolution nanoscopy.
Collapse
Affiliation(s)
- Chaohao Chen
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Baolei Liu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xuchen Shan
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Liput M, Magliaro C, Kuczynska Z, Zayat V, Ahluwalia A, Buzanska L. Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Dev Neurobiol 2021; 81:591-607. [PMID: 33725382 DOI: 10.1002/dneu.22818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria are cellular organelles involved in generating energy to power various processes in the cell. Although the pivotal role of mitochondria in neurogenesis was demonstrated (first in animal models), very little is known about their role in human embryonic neurodevelopment and its pathology. In this respect human-induced pluripotent stem cells (hiPSC)-derived cerebral organoids provide a tractable, alternative model system of the early neural development and disease that is responsive to pharmacological and genetic manipulations, not possible to apply in humans. Although the involvement of mitochondria in the pathogenesis and progression of neurodegenerative diseases and brain dysfunction has been demonstrated, the precise role they play in cell life and death remains unknown, compromising the development of new mitochondria-targeted approaches to treat human diseases. The cerebral organoid model of neurogenesis and disease in vitro provides an unprecedented opportunity to answer some of the most fundamental questions about mitochondrial function in early human neurodevelopment and neural pathology. Largely an unexplored territory due to the lack of tools and approaches, this review focuses on recent technological advancements in fluorescent and molecular tools, imaging systems, and computational approaches for quantitative and qualitative analyses of mitochondrial structure and function in three-dimensional cellular assemblies-cerebral organoids. Future developments in this direction will further facilitate our understanding of the important role or mitochondrial dynamics and energy requirements during early embryonic development. This in turn will provide a further understanding of how dysfunctional mitochondria contribute to disease processes.
Collapse
Affiliation(s)
- Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Magliaro
- Research Centre "E. Piaggio", and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Zuzanna Kuczynska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Valery Zayat
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Arti Ahluwalia
- Research Centre "E. Piaggio", and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Li D, Wang S, Chu S, He Y, Lu G, Jiang H, Gong Q. Information transfer from the optical phase to a plasmonic digital encoder composed of a gold nanorod pair. OPTICS LETTERS 2021; 46:1628-1631. [PMID: 33793512 DOI: 10.1364/ol.417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Small all-optical devices are central to the optical computing. Plasmonic digital encoders (PDEs) with a featured dimension of ∼1µm hold the key for transferring information from far field to photonic processing systems. Here we propose a PDE design composed of two gold nanorods (AuNRs), whose pattern represents 2-bit digital information. We implanted information into the spectral phase of a femtosecond pulse by pulse shaping and controlled the two-photon photoluminescence pattern of an AuNR pair. The high contrast ratios were achieved with 13.01 and 6.02 dB for binary codes "1-0" and "0-1", respectively.
Collapse
|