1
|
Bolius S, Schmidt A, Kaiser J, Arz HW, Dellwig O, Karsten U, Epp LS, Kremp A. Resurrection of a diatom after 7000 years from anoxic Baltic Sea sediment. THE ISME JOURNAL 2025; 19:wrae252. [PMID: 39749986 PMCID: PMC11742256 DOI: 10.1093/ismejo/wrae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dormancy is a widespread key life history trait observed across the tree of life. Many plankton species form dormant cell stages that accumulate in aquatic sediments and, under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi Sarno et Zigone, that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light. Resurrected diatom strains, representing cohorts from six different time points of the past 6871 ± 140 years, are genetically differentiated, and fundamental physiological functions such as growth and photosynthesis have remained stable through time despite distinct environmental dynamics. Showing that resurrection and full functional recovery, in comparison to 3 ± 2 years of dormancy, is possible after millennial resting, we emphasize the relevance of dormancy and living sediment archives. For the future, sediment archives, together with the resurrection approach, would offer a powerful tool to trace adaptive traits over millennia under distinct climatic conditions and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Sarah Bolius
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Alexandra Schmidt
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- International Max Planck Research School Quantitative Behaviour Ecology & Evolution, 78457 Konstanz, Germany
| | - Jérôme Kaiser
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Helge W Arz
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Olaf Dellwig
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Science, University of Rostock, 18051 Rostock, Germany
| | - Laura S Epp
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Anke Kremp
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| |
Collapse
|
2
|
Alu'datt MH, Rababah T, Tranchant CC, Al-U'datt D, Gammoh S, Alrosan M, Bani-Melhem K, Aldughpassi A, Alkandari D, AbuJalban D. Date palm (Phoenix dactylifera) bioactive constituents and their applications as natural multifunctional ingredients in health-promoting foods and nutraceuticals: A comprehensive review. Compr Rev Food Sci Food Saf 2025; 24:e70084. [PMID: 39676494 DOI: 10.1111/1541-4337.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Foods that support human health and longevity are becoming increasingly relevant as substitutes for or adjuncts to pharmacological drugs, either through direct consumption or incorporation into designer foods fortified with health-promoting ingredients. Date palm (Phoenix dactylifera L.) fruits, seeds, and pollen are a cornerstone of diverse food and medicine traditions. Their reported metabolic activities include anti-inflammatory, antioxidant, antihypertensive, antihyperlipidemic, antidiabetic, antitumor, antianemia, hepatoprotective, antibacterial, and antiviral effects. Beneficial effects on gut health and vascular health, as well as effectiveness in alleviating certain dysfunctions of the reproductive system, have also been noted. The genomic diversity of this versatile tree and the diverse agroecological conditions in which it grows lead to appreciable variations in the occurrence of protective nutrients and other high-value bioactive phytochemicals, including flavonoid and non-flavonoid phenolics, carotenoids, phytosterols, and oxylipins, whose potential remains underutilized in the food sector. As food ingredients, date fruits and their co-products can improve the sensory, nutritional, and nutraceutical qualities of a broad range of dietary items. Their high nutritional density can assist with the design of novel or improved products that meet the demand for healthier foods. This review summarizes the current state of evidence on the potentialities of date palm fruits and co-products in functional food development, focusing on the nutrients and extra-nutritional compounds of interest, their biofunctional activities, and factors that influence their abundance and bioactivity. Proofs of concept across food and beverage categories, new developments, and clinical evidence are discussed, followed by recommendations for addressing research gaps.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Carole C Tranchant
- School of Food Science and Nutrition, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, New Brunswick, Canada
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit, Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Ahmed Aldughpassi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Dina Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Dana AbuJalban
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| |
Collapse
|
3
|
Smet W, Blilou I. Developmental and Genetic Aspects of Desert Crops. Annu Rev Genet 2024; 58:91-112. [PMID: 39585906 DOI: 10.1146/annurev-genet-111523-102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.
Collapse
Affiliation(s)
- Wouter Smet
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| |
Collapse
|
4
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Yang X, Huang Y, Xia P. The property and function of proteins undergoing liquid-liquid phase separation in plants. PLANT, CELL & ENVIRONMENT 2024; 47:3671-3684. [PMID: 38808958 DOI: 10.1111/pce.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
A wide variety of membrane-less organelles in cells play an essential role in regulating gene expression, RNA processing, plant growth and development, and helping organisms cope with changing external environments. In biology, liquid-liquid phase separation (LLPS) usually refers to a reversible process in which one or more specific molecular components are spontaneously separated from the bulk environment, producing two distinct liquid phases: concentrated and dilute. LLPS may be a powerful cellular compartmentalisation mechanism whereby biocondensates formed via LLPS when biomolecules exceed critical or saturating concentrations in the environment where they are found will be generated. It has been widely used to explain the formation of membrane-less organelles in organisms. LLPS studies in the context of plant physiology are now widespread, but most of the research is still focused on non-plant systems; the study of phase separation in plants needs to be more thorough. Proteins and nucleic acids are the main components involved in LLPS. This review summarises the specific features and properties of biomolecules undergoing LLPS in plants. We describe in detail these biomolecules' structural characteristics, the mechanism of formation of condensates, and the functions of these condensates. Finally, We summarised the phase separation mechanisms in plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Xuejiao Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Sallon S, Solowey E, Gostel MR, Egli M, Flematti GR, Bohman B, Schaeffer P, Adam P, Weeks A. Characterization and analysis of a Commiphora species germinated from an ancient seed suggests a possible connection to a species mentioned in the Bible. Commun Biol 2024; 7:1109. [PMID: 39256474 PMCID: PMC11387840 DOI: 10.1038/s42003-024-06721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
A seed recovered during archaeological excavations of a cave in the Judean desert was germinated, with radiocarbon analysis indicating an age of 993 CE- 1202 calCE. DNA sequencing and phylogenetic analysis identified the seedling as belonging to the angiosperm genus Commiphora Jacq., sister to three Southern African Commiphora species, but unique from all other species sampled to date. The germinated seedling was not closely related to Commiphora species commonly harvested for their fragrant oleoresins including Commiphora gileadensis (L.) C.Chr., candidate for the locally extinct "Judean Balsam" or "Balm of Gilead" of antiquity. GC-MS analysis revealed minimal fragrant compounds but abundance of those associated with multi-target bioactivity and a previously undescribed glycolipid compound series. Several hypotheses are offered to explain the origins, implications and ethnobotanical significance of this unknown Commiphora sp., to the best of our knowledge the first identified from an archaeological site in this region, including identification with a resin producing tree mentioned in Biblical sources and possible agricultural relationship with the historic Judean Balsam.
Collapse
Affiliation(s)
- Sarah Sallon
- Natural Medicine Research Center (NMRC), Hadassah Medical Organization, Jerusalem, 91120, Israel.
| | - Elaine Solowey
- Centre for Sustainable Agriculture, Arava Institute of Environmental Studies (AIES) Kibbutz, Ketura, 88840, Israel
| | - Morgan R Gostel
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, Texas, 76132-3400, USA
| | - Markus Egli
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Björn Bohman
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Philippe Schaeffer
- Université de Strasbourg-CNRS, Institut de Chimie de Strasbourg UMR 7177, F-67000, Strasbourg, France
| | - Pierre Adam
- Université de Strasbourg-CNRS, Institut de Chimie de Strasbourg UMR 7177, F-67000, Strasbourg, France
| | - Andrea Weeks
- Department of Biology and Ted R. Bradley Herbarium, George Mason University, 4400 University Drive, Fairfax, Virginia, 22030, USA
| |
Collapse
|
7
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Meiri M, Bar-Oz G. Unraveling the diversity and cultural heritage of fruit crops through paleogenomics. Trends Genet 2024; 40:398-409. [PMID: 38423916 PMCID: PMC11079635 DOI: 10.1016/j.tig.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Collapse
Affiliation(s)
- Meirav Meiri
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837 Mount Carmel, Israel
| |
Collapse
|
9
|
Bhutta N, Nunez-Martinez OF, Mei C, Bräutigam K. Seed Collection in Temperate Trees-Clean, Fast, and Effective Extraction of Populus Seeds for Laboratory Use and Long-term Storage. Bio Protoc 2024; 14:e4927. [PMID: 38379829 PMCID: PMC10875353 DOI: 10.21769/bioprotoc.4927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 01/01/2024] [Indexed: 02/22/2024] Open
Abstract
Seeds ensure the growth of a new generation of plants and are thus central to maintaining plant populations and ecosystem processes. Nevertheless, much remains to be learned about seed biology and responses of germinated seedlings to environmental challenges. Experiments aiming to close these knowledge gaps critically depend on the availability of healthy, viable seeds. Here, we report a protocol for the collection of seeds from plants in the genus Populus. This genus comprises trees with a wide distribution in temperate forests and with economic relevance, used as scientific models for perennial plants. As seed characteristics can vary drastically between taxonomic groups, protocols need to be tailored carefully. Our protocol takes the delicate nature of Populus seeds into account. It uses P. deltoides as an example and provides a template to optimize bulk seed extraction for other Populus species and plants with similar seed characteristics. The protocol is designed to only use items available in most labs and households and that can be sterilized easily. The unique characteristics of this protocol allow for the fast and effective extraction of high-quality seeds. Here, we report on seed collection, extraction, cleaning, storage, and viability tests. Moreover, extracted seeds are well suited for tissue culture and experiments under sterile conditions. Seed material obtained with this protocol can be used to further our understanding of tree seed biology, seedling performance under climate change, or diversity of forest genetic resources. Key features • Populus species produce seeds that are small, delicate, non-dormant, with plenty of seed hair. Collection of seed material needs to be timed properly. • Processing, seed extraction, seed cleaning, and storage using simple, sterilizable laboratory and household items only. Obtained seeds are pure, high quality, close to 100% viability. • Seeds work well in tissue culture and in experiments under sterile conditions. • Extractability, speed, and seed germination were studied and confirmed for Populus deltoides as an example. • Can also serve as template for bulk seed collection from other Populus species and plant groups that produce delicate seeds (with no or little modifications). Graphical overview.
Collapse
Affiliation(s)
- Naima Bhutta
- Department of Biology, University of Toronto
Mississauga, Mississauga, ON, Canada
| | - Oscar F. Nunez-Martinez
- Department of Biology, University of Toronto
Mississauga, Mississauga, ON, Canada
- Department of Cell & Systems Biology, University
of Toronto, Toronto, ON, Canada
| | - Carmen Mei
- Department of Biology, University of Toronto
Mississauga, Mississauga, ON, Canada
- Department of Cell & Systems Biology, University
of Toronto, Toronto, ON, Canada
| | - Katharina Bräutigam
- Department of Biology, University of Toronto
Mississauga, Mississauga, ON, Canada
- Department of Cell & Systems Biology, University
of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Khwaldia K, M'Rabet Y, Boulila A. Active food packaging films from alginate and date palm pit extract: Physicochemical properties, antioxidant capacity, and stability. Food Sci Nutr 2023; 11:555-568. [PMID: 36655113 PMCID: PMC9834853 DOI: 10.1002/fsn3.3093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 09/25/2022] [Indexed: 01/21/2023] Open
Abstract
Date palm pits are highly available and inexpensive palm date by-products, representing a valuable source of natural antioxidants, particularly phenolic compounds. Date palm pit extract (DPPE) was prepared from these waste products and characterized for its phenolic content and in vitro antioxidant activity. Profiling DPPE by liquid chromatography coupled with mass spectrometry (LC/MS) showed the presence of dimers and trimers of (epi)catechin as the main constituents. Alginate-based films with four increasing concentrations of DPPE (10%, 20%, 30%, and 40% w/w) were prepared by the casting method. DPPE incorporation reduced solubility values of alginate films by 37%-64% and their surface wettability by 72%-111%. The incorporation of 10% DPPE improved water vapor barrier properties and increased tensile strength (TS) and elongation at break (%E) of alginate films by more than 23%, 50%, and 45%, respectively. The film containing 40% DPPE showed the lowest loss of phenolic content (32%), DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activity (38%), and ferric reducing antioxidant power (FRAP) (30%) after storage for 3 months.
Collapse
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| | - Yassine M'Rabet
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| | - Abdennacer Boulila
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| |
Collapse
|
11
|
HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in Lebanese and their relatedness to neighboring and distant populations. BMC Genomics 2022; 23:456. [PMID: 35725365 PMCID: PMC9208108 DOI: 10.1186/s12864-022-08682-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study examined the origin of present-day Lebanese using high-resolution HLA class I and class II allele and haplotype distributions. The study subjects comprised 152 unrelated individuals, and their HLA class I and class II alleles and two-locus and five-locus haplotypes were compared with those of neighboring and distant communities using genetic distances, neighbor-joining dendrograms, correspondence, and haplotype analyses. HLA class I (A, B, C) and class II (DRB1, DQB1) were genotyped at a high-resolution level by PCR-SSP. RESULTS In total, 76 alleles across the five HLA loci were detected: A*03:01 (17.1%), A*24:02 (16.5%), B*35:01 (25.7%), C*04:01 (25.3%), and C*07:01 (20.7%) were the most frequent class I alleles, while DRB1*11:01 (34.2%) and DQB1*03:01 (43.8%) were the most frequent class II alleles. All pairs of HLA loci were in significant linkage disequilibrium. The most frequent two-locus haplotypes recorded were DRB1*11:01 ~ DQB1*03:01 (30.9%), B*35:01-C*04:01 (20.7%), B*35:01 ~ DRB1*11:01 (13.8%), and A*24:02 ~ B*35:01 (10.3%). Lebanese appear to be closely related to East Mediterranean communities such as Levantines (Palestinians, Syrians, and Jordanians), Turks, Macedonians, and Albanians. However, Lebanese appear to be distinct from North African, Iberian, and Sub-Saharan communities. CONCLUSIONS Collectively, this indicates a limited genetic contribution of Arabic-speaking populations (from North Africa or the Arabian Peninsula) and Sub-Saharan communities to the present-day Lebanese gene pool. This confirms the notion that Lebanese population are of mixed East Mediterranean and Asian origin, with a marked European component.
Collapse
|
12
|
Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S, Bossi F, Lazarus E, Pennington JG, Michiels E, De Decker M, Vints K, Baatsen P, Bassel GW, Otegui MS, Holehouse AS, Exposito-Alonso M, Sukenik S, Gitler AD, Rhee SY. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 2021; 184:4284-4298.e27. [PMID: 34233164 PMCID: PMC8513799 DOI: 10.1016/j.cell.2021.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.
Collapse
Affiliation(s)
- Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Flores
- Department of Chemistry and Chemical Biology, UC Merced, Merced, CA 95340, USA
| | - Benjamin Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Elena Lazarus
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Janice G Pennington
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA
| | - Emiel Michiels
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Mathias De Decker
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Katlijn Vints
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Baatsen
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marisa S Otegui
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, CA 95340, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Hosni H, Diallo A, Morcillo F, Vaissayre V, Collin M, Tranchant-Dubreuil C, Dussert S, Joët T, Castaño F, Marquínez X, Stauffer FW, Hodel DR, Castillo Mont JJ, Adam H, Jouannic S, Tregear JW. Redox-related gene expression and sugar accumulation patterns are altered in the edible inflorescence produced by the cultivated form of pacaya palm (Chamaedorea tepejilote). ANNALS OF BOTANY 2021; 128:231-240. [PMID: 33978714 PMCID: PMC8324030 DOI: 10.1093/aob/mcab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The pacaya palm is a dioecious neotropical palm species that is exploited in Latin America for its male inflorescence, which is edible when immature. It is cultivated, in a non-intensive manner, in Guatemala, where a morphotype occurs that produces much larger, more highly branched inflorescences compared with wild palms. We sought to identify molecular factors underlying this phenotypic divergence, which is likely to be a product of domestication. METHODS We performed RNA-seq-based studies on immature pacaya palm male inflorescences in order to identify genes that might be directly or indirectly affected in their expression in relation to domestication. We also measured the accumulation of a range of soluble sugar molecules to provide information on the biochemical status of the two different types of material. KEY RESULTS A total of 408 genes were found to display significantly different expression levels between the wild and cultivated morphotypes. Three different functional categories were found to be enriched in the gene set that was upregulated in the cultivated morphotype: redox balance; secondary metabolism; and transport. Several sugars were found to accumulate at higher levels in inflorescences of the cultivated morphotype, in particular myo-inositol, fructose and glucose. CONCLUSIONS The observed upregulation of redox-related genes in the cultivated morphotype is corroborated by the observation of higher myo-inositol accumulation, which has been shown to be associated with enhanced scavenging of reactive oxygen species in other plants and which may affect meristem activity.
Collapse
Affiliation(s)
- Hanene Hosni
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Abdoulaye Diallo
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Fabienne Morcillo
- CIRAD, DIADE, Montpellier, France
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Virginie Vaissayre
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Myriam Collin
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | | | - Stéphane Dussert
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Thierry Joët
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Felipe Castaño
- Universidad Industrial de Santander, Escuela de Biología, Calle, Bucaramanga, Colombia
| | - Xavier Marquínez
- Universidad Nacional de Colombia, Departamento de Biología, Carrera, Bogotá, Colombia
| | - Fred W Stauffer
- Conservatoire et Jardin botaniques de la Ville de Genève, Université de Genève, Laboratoire de Systématique Végétale et Biodiversité, Chambésy, Switzerland
| | - Donald R Hodel
- University of California, Cooperative Extension, Alhambra, CA, USA
| | | | - Hélène Adam
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Stefan Jouannic
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - James W Tregear
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
- For correspondence. E-mail
| |
Collapse
|
14
|
Abstract
Resurrection genomics is an alternative to ancient DNA approaches in studying the genetics and evolution of past and possibly extinct populations. By reviving biological material such as germinating ancient seeds from archaeological and paleontological sites, or historical collections, one can study genomes of lost populations. We applied this approach by sequencing the genomes of seven Judean date palms (Phoenix dactylifera) that were germinated from ∼2,000 y old seeds recovered in the Southern Levant. Using this genomic data, we were able to document that introgressive hybridization of the wild Cretan palm Phoenix theophrasti into date palms had occurred in the Eastern Mediterranean by ∼2,200 y ago and examine the evolution of date palm populations in this pivotal region two millennia ago. Seven date palm seeds (Phoenix dactylifera L.), radiocarbon dated from the fourth century BCE to the second century CE, were recovered from archaeological sites in the Southern Levant and germinated to yield viable plants. We conducted whole-genome sequencing of these germinated ancient samples and used single-nucleotide polymorphism data to examine the genetics of these previously extinct Judean date palms. We find that the oldest seeds from the fourth to first century BCE are related to modern West Asian date varieties, but later material from the second century BCE to second century CE showed increasing genetic affinities to present-day North African date palms. Population genomic analysis reveals that by ∼2,400 to 2,000 y ago, the P. dactylifera gene pool in the Eastern Mediterranean already contained introgressed segments from the Cretan palm Phoenix theophrasti, a crucial genetic feature of the modern North African date palm populations. The P. theophrasti introgression fraction content is generally higher in the later samples, while introgression tracts are longer in these ancient germinated date palms compared to modern North African varieties. These results provide insights into crop evolution arising from an analysis of plants originating from ancient germinated seeds and demonstrate what can be accomplished with the application of a resurrection genomics approach.
Collapse
|
15
|
Ahmad A, Naqvi SA, Jaskani MJ, Waseem M, Ali E, Khan IA, Faisal Manzoor M, Siddeeg A, Aadil RM. Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci Nutr 2021; 9:2066-2074. [PMID: 33841824 PMCID: PMC8020936 DOI: 10.1002/fsn3.2175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
Dates (Phoenix dactylifera L.) are rich in nutritional compounds, particularly in sugars. Sugars offer anaerobic fermentation, used for bioethanol production. Recently, researchers and industrialists finding ways to produce low-cost bioethanol on large scale using agricultural wastes. Date palm residual is the largest agricultural waste in Pakistan, which can be the cheapest source for bioethanol production, whereas the current study was designed to explore the possible utilization and the potential of date palm waste for bioethanol production through Saccharomyces cerevisiae grown in yeast extract, Bacto peptone, and d-glucose medium. The fermentation process resulted in the production of 15% (v/v) ethanol under the optimum condition of an incubation period of 72 hr and three sugars (glucose, fructose, and sucrose) were found in date waste. The functional group of ethanol (C2H5OH) was also found via Fourier-transform infrared spectroscopy (FTIR) analysis. Therefore, S. cerevisiae could be recommended for ethanol production due to short fermentation time at 25% inoculum in 30°C and reduced the processing cost. Common date varieties of low market value are a preferred substrate for the process of producing industrial ethanol. Additionally, proximate analysis of date fruit by near-infrared spectroscopy revealed moisture contents (16.84%), crude protein (0.3%), ash (9.8%), crude fat (2.6%), and neutral detergent fibers (13.4%). So, date fruit contains various nutrients for microbial growth for ethanol production.
Collapse
Affiliation(s)
- Arslan Ahmad
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Summar A. Naqvi
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Muhammad J. Jaskani
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Muhammad Waseem
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Ehsan Ali
- Punjab Bioenergy InstituteUniversity of AgricultureFaisalabadPakistan
| | - Iqrar A. Khan
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | | | - Azhari Siddeeg
- Department of Food EngineeringFaculty of EngineeringUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| |
Collapse
|
16
|
Huss JC, Antreich SJ, Bachmayr J, Xiao N, Eder M, Konnerth J, Gierlinger N. Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004519. [PMID: 33079407 DOI: 10.1002/adma.202004519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Indexed: 05/20/2023]
Abstract
Many organisms encapsulate their embryos in hard, protective shells. While birds and reptiles largely rely on mineralized shells, plants often develop highly robust lignocellulosic shells. Despite the abundance of hard plant shells, particularly nutshells, it remains unclear which fundamental properties drive their mechanical stability. This multiscale analysis of six prominent (nut)shells (pine, pistachio, walnut, pecan, hazelnut, and macadamia) reveals geometric and structural strengthening mechanisms on the cellular and macroscopic length scales. The strongest tissues, found in walnut and pistachio, exploit the topological interlocking of 3D-puzzle cells and thereby outperform the fiber-reinforced structure of macadamia under tensile and compressive loading. On the macroscopic scale, strengthening occurs via an increased shell thickness, spherical shape, small size, and a lack of extended sutures. These functional interrelations suggest that simple geometric modifications are a powerful and resource-efficient strategy for plants to enhance the fracture resistance of entire shells and their tissues. Understanding the interplay between structure, geometry, and mechanics in hard plant shells provides new perspectives on the evolutionary diversification of hard seed coats, as well as insights for nutshell-based material applications.
Collapse
Affiliation(s)
- Jessica C Huss
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Sebastian J Antreich
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Jakob Bachmayr
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Nannan Xiao
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, 3430, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| |
Collapse
|