1
|
Li R, Wang W, Shi Y, Wang CT, Wang P. Advanced Material Design and Engineering for Water-Based Evaporative Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209460. [PMID: 36638501 DOI: 10.1002/adma.202209460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water-based evaporative cooling is emerging as a promising technology to provide sustainable and low-cost cold to alleviate the rising global cooling demand. Given the significant and fast progress made in recent years, this review aims to provide a timely overview on the state-of-the-art material design and engineering in water-based evaporative cooling. The fundamental mechanisms and major components of three water-based evaporative cooling processes are introduced, including direct evaporative cooling, cyclic sorption-driven liquid water evaporative cooling (CSD-LWEC), and atmospheric water harvesting-based evaporative cooling (AWH-EC). The distinctive requirements on the sorbent materials in CSD-LWEC and AWH-EC are highlighted, which helps synthesize the literature information on the advanced material design and engineering for the purpose of improving cooling performance. The challenges and future outlooks on further improving the water-based evaporative cooling performance are also provided.
Collapse
Affiliation(s)
- Renyuan Li
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenbin Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yifeng Shi
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chang-Ting Wang
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Peng Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
2
|
Zhu Z, Xu J, Liang Y, Luo X, Chen J, Yang Z, He J, Chen Y. Bioinspired Solar-Driven Osmosis for Stable High Flux Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3800-3811. [PMID: 38350025 DOI: 10.1021/acs.est.3c08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The growing global water crisis necessitates sustainable desalination solutions. Conventional desalination technologies predominantly confront environmental issues such as high emissions from fossil-fuel-driven processes and challenges in managing brine disposal during the operational stages, emphasizing the need for renewable and environmentally friendly alternatives. This study introduces and assesses a bioinspired, solar-driven osmosis desalination device emulating the natural processes of mangroves with effective contaminant rejection and notable productivity. The bioinspired solar-driven osmosis (BISO) device, integrating osmosis membranes, microporous absorbent paper, and nanoporous ceramic membranes, was evaluated under different conditions. We conducted experiments in both controlled and outdoor settings, simulating seawater with a 3.5 wt % NaCl solution. With a water yield of 1.51 kg m-2 h-1 under standard solar conditions (one sun), the BISO system maintained excellent salt removal and accumulation resistance after up to 8 h of experiments and demonstrated great cavitation resistance even at 58.14 °C. The outdoor test recorded a peak rate of 1.22 kg m-2 h-1 and collected 16.5 mL in 8 h, showing its practical application potential. These results highlight the BISO device's capability to address water scarcity using a sustainable approach, combining bioinspired design with solar power, presenting a viable pathway in renewable-energy-driven desalination technology.
Collapse
Affiliation(s)
- Zihao Zhu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingzong Liang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianglong Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianyong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiacheng He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Huang G, Xu J, Markides CN. High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf. Nat Commun 2023; 14:3344. [PMID: 37291103 PMCID: PMC10250451 DOI: 10.1038/s41467-023-38984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Most solar energy incident (>70%) upon commercial photovoltaic panels is dissipated as heat, increasing their operating temperature, and leading to significant deterioration in electrical performance. The solar utilisation efficiency of commercial photovoltaic panels is typically below 25%. Here, we demonstrate a hybrid multi-generation photovoltaic leaf concept that employs a biomimetic transpiration structure made of eco-friendly, low-cost and widely-available materials for effective passive thermal management and multi-generation. We demonstrate experimentally that bio-inspired transpiration can remove ~590 W/m2 of heat from a photovoltaic cell, reducing the cell temperature by ~26 °C under an irradiance of 1000 W/m2, and resulting in a relatively 13.6% increase in electrical efficiency. Furthermore, the photovoltaic leaf is capable of synergistically utilising the recovered heat to co-generate additional thermal energy and freshwater simultaneously within the same component, significantly elevating the overall solar utilisation efficiency from 13.2% to over 74.5%, along with over 1.1 L/h/m2 of clean water.
Collapse
Affiliation(s)
- Gan Huang
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK.
| | - Jingyuan Xu
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Christos N Markides
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu CW, Tao G. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev 2023; 10:nwac208. [PMID: 36684522 PMCID: PMC9843130 DOI: 10.1093/nsr/nwac208] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Photonic structures at the wavelength scale offer innovative energy solutions for a wide range of applications, from high-efficiency photovoltaics to passive cooling, thus reshaping the global energy landscape. Radiative cooling based on structural and material design presents new opportunities for sustainable carbon neutrality as a zero-energy, ecologically friendly cooling strategy. In this review, in addition to introducing the fundamentals of the basic theory of radiative cooling technology, typical radiative cooling materials alongside their cooling effects over recent years are summarized and the current research status of radiative cooling materials is outlined and discussed. Furthermore, technical challenges and potential advancements for radiative cooling are forecast with an outline of future application scenarios and development trends. In the future, radiative cooling is expected to make a significant contribution to global energy saving and emission reduction.
Collapse
Affiliation(s)
- Jun Liang
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huagen Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xianjun Zhou
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Liang
- Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|