1
|
Zhang Y, Wu C, Gu H, Song Y, Zhao R, Zhang D, Xie Z, Liu Y, Cheng Z. An Active Strategy Based on Different Droplet Removal Modes on Polydimethylsiloxane Magnetic Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400466. [PMID: 38676346 DOI: 10.1002/smll.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The efficient removal of droplets on solid surfaces holds significant importance in the field of fog collection, condensation heat transfer, and so on. However, on current typical surfaces, droplets are characterized by a passive and single removal mode, contingent on the traction force (e.g., capillary force, Laplace pressure, etc.) generated by the surface's physics and chemistry design, posing challenges for enhancing the efficiency of droplet removal. In this paper, an effective active strategy based on different removal modes is demonstrated on magnetic responsive polydimethylsiloxane (PDMS) superhydrophobic microplates (RM-MPSM). By regulating the parameters of microplates and droplet volume, different effective departure modes (top jumping and side departure) can be induced to facilitate the removal of droplets. Moreover, the removal volume of droplets through the side departure mode exhibits a significant reduction compared to that observed in the top jumping mode. The exceptional removal ability of RM-MPSM demonstrates adaptability to diverse functional applications: efficient fog collection, removal of condensation droplets and micro-particles. The efficient modes of droplet removal demonstrated in this work hold significant implications for broadening its application in many fields, such as droplet collection, heat transfer, and anti-icing.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chao Wu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haoyu Gu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yingbin Song
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dongjie Zhang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Park S, Choi G, Kang M, Kim W, Kim J, Jeong HE. Bioinspired magnetic cilia: from materials to applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:153. [PMID: 38093810 PMCID: PMC10716204 DOI: 10.1038/s41378-023-00611-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 01/26/2025]
Abstract
Microscale and nanoscale cilia are ubiquitous in natural systems where they serve diverse biological functions. Bioinspired artificial magnetic cilia have emerged as a highly promising technology with vast potential applications, ranging from soft robotics to highly precise sensors. In this review, we comprehensively discuss the roles of cilia in nature and the various types of magnetic particles utilized in magnetic cilia; additionally, we explore the top-down and bottom-up fabrication techniques employed for their production. Furthermore, we examine the various applications of magnetic cilia, including their use in soft robotics, droplet and particle control systems, fluidics, optical devices, and sensors. Finally, we present our conclusions and the future outlook for magnetic cilia research and development, including the challenges that need to be overcome and the potential for further integration with emerging technologies.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| |
Collapse
|
3
|
Kang M, Seong M, Lee D, Kang SM, Kwak MK, Jeong HE. Self-Assembled Artificial Nanocilia Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200185. [PMID: 35417603 DOI: 10.1002/adma.202200185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Self-assembly of nanoparticles (NPs) is a powerful route to constructing higher-order structures. However, the programmed self-assembly of NPs into non-close-packed, 3D, shape-morphing nanocilia arrays remains elusive, whereas dynamically actuated nanometer cilia are universal in living systems. Here, a programmable self-assembly strategy is presented that can direct magnetic NPs into a highly ordered responsive artificial nanocilia actuator with exquisite nanometer 3D structural arrangements. The self-assembled artificial NP cilia can maintain their structural integrity through the interplay of interparticle interactions. Interestingly, the nanocilia can exhibit a field-responsive actuation motion through "rolling and sliding" between assembled NPs rather than bending the entire ciliary beam. It is demonstrated that oleic acid coated over the NPs acts as a lubricating bearing and enables the rolling/sliding-based actuation of the cilia.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Donghyuk Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong Min Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Choi J, Lee S, Ohkawa K, Hwang DS. Counterplotting the Mechanosensing-Based Fouling Mechanism of Mussels against Fouling. ACS NANO 2021; 15:18566-18579. [PMID: 34766757 DOI: 10.1021/acsnano.1c09097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine organisms react to various factors when building colonies for survival; however, severe accumulation of diverse organisms on artificial structures located close to water causes large industrial losses. Herein, we identify a concept in the development of antifouling surfaces based on understanding the surface stiffness recognition procedure of mussel adhesion at the genetic level. It was found that on a soft surface the combination of decreased adhesive plaque size, adhesion force, and plaque protein downregulation synergistically weakens mussel wet adhesion and sometimes prevents mussels from anchoring, mainly due to transcriptional changes within the mechanosensing pathway and the adhesive proteins in secretory glands. In addition, the use of soft substrates or antagonists of surface mechanosensing behavior suppresses mussel fouling significantly.
Collapse
Affiliation(s)
- Jimin Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sejin Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Life Science, Handong Global University, Pohang, 791-708, Republic of Korea
| | - Kousaku Ohkawa
- Institute for Fiber Engineering, Shinshu University (IFES), Tokida 3-15-1, Ueda, 386-8567, Nagano, Japan
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
5
|
Vellwock AE, Yao H. Biomimetic and bioinspired surface topographies as a green strategy for combating biofouling: a review. BIOINSPIRATION & BIOMIMETICS 2021; 16:041003. [PMID: 34044382 DOI: 10.1088/1748-3190/ac060f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Biofouling refers to the adverse attachment and colonization of fouling organisms, including macromolecules, bacteria, and sessile invertebrates, on the surfaces of materials submerged in aquatic environments. Almost all structures working in watery surroundings, from marine infrastructures to healthcare facilities, are affected by this sticky problem, resulting in massive direct and indirect economic loss and enormous cost every year in protective maintenance and remedial cleaning. Traditional approaches to preventing marine biofouling primarily rely on the application of biocide-contained paints, which certainly impose adverse effects on the ocean environment and marine ecology. Biomimicry offers an efficient shortcut to developing environmentally friendly antifouling techniques and has yielded encouraging and promising results. The antifouling strategies learned from nature can be broadly classified into two categories according to the nature of the cues applied for biofouling control. One is the chemical antifouling techniques, which are dedicated to extracting the effective antifoulant compounds from marine organisms and synthesizing chemicals mimicking natural antifoulants. In contrast, the physical biomimetic (BM) antifouling practices focus on the emulation and optimization of the physical cues such as micro and nanoscale surface topographies learned from naturally occurring surfaces for better antifouling efficacy. In this review, a synopsis of the techniques for manufacturing the BM and bioinspired (BI) antifouling surface topographies is introduced, followed by the bioassay to assess the antifouling performance of the structured surfaces. Then, the BM and BI surface topographies that were reported to possess enhanced antifouling competence are introduced, followed by a summary of theoretical modeling. The whole paper is concluded by summarizing the studies' deficiencies so far and outlooking the research directions in the future.
Collapse
Affiliation(s)
- Andre E Vellwock
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Haimin Yao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
6
|
Choi G, Ko H, Jang H, Hwang I, Seong M, Sun K, Park HH, Park TE, Kim J, Jeong HE. Biofouling-resistant tubular fluidic devices with magneto-responsive dynamic walls. SOFT MATTER 2021; 17:1715-1723. [PMID: 33538288 DOI: 10.1039/d0sm01979h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biofouling of tubular fluidic devices limits the stability, accuracy, and long-term uses of lab-on-a-chip systems. Healthcare-associated infection by biofilm formations on body-indwelling and extracorporeal tubular medical devices is also a major cause of mortality and morbidity in patients. Although diverse antifouling techniques have been developed to prevent bacterial contamination of fluidic devices based on antimicrobial materials or nanoscale architectures, they still have limitations in biocompatibility, long-term activity, and durability. In this study, a new conceptual tubular fluidic device model that can effectively suppress bacterial contamination based on dynamic surface motions without using bactericidal materials or nanostructures is proposed. The fluidic device is composed of a magneto-responsive multilayered composite. The composite tube can generate dynamic surface deformation with controlled geometries along its inner wall in response to a remote magnetic field. The magnetic field-derived surface wave induces the generation of vortices near the inner wall surface of the tube, enabling sweeping of bacterial cells from the surface. As a result, the dynamic composite tube could effectively prevent biofilm formation for an extended time of 14 days without surface modification with chemical substances or nanostructures.
Collapse
Affiliation(s)
- Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hangil Ko
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Insol Hwang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, Jeonbuk 54538, Republic of Korea
| | - Tae-Eun Park
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Grobas I, Bazzoli DG, Asally M. Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem Soc Trans 2020; 48:2903-2913. [PMID: 33300966 PMCID: PMC7752047 DOI: 10.1042/bst20200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Bacteria can organise themselves into communities in the forms of biofilms and swarms. Through chemical and physical interactions between cells, these communities exhibit emergent properties that individual cells alone do not have. While bacterial communities have been mainly studied in the context of biochemistry and molecular biology, recent years have seen rapid advancements in the biophysical understanding of emergent phenomena through physical interactions in biofilms and swarms. Moreover, new technologies to control bacterial emergent behaviours by physical means are emerging in synthetic biology. Such technologies are particularly promising for developing engineered living materials (ELM) and devices and controlling contamination and biofouling. In this minireview, we overview recent studies unveiling physical and mechanical cues that trigger and affect swarming and biofilm development. In particular, we focus on cell shape, motion and density as the key parameters for mechanical cell-cell interactions within a community. We then showcase recent studies that use physical stimuli for patterning bacterial communities, altering collective behaviours and preventing biofilm formation. Finally, we discuss the future potential extension of biophysical and bioengineering research on microbial communities through computational modelling and deeper investigation of mechano-electrophysiological coupling.
Collapse
Affiliation(s)
- Iago Grobas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Dario G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
8
|
A Pressure-Insensitive Self-Attachable Flexible Strain Sensor with Bioinspired Adhesive and Active CNT Layers. SENSORS 2020; 20:s20236965. [PMID: 33291510 PMCID: PMC7730429 DOI: 10.3390/s20236965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Abstract
Flexible tactile sensors are required to maintain conformal contact with target objects and to differentiate different tactile stimuli such as strain and pressure to achieve high sensing performance. However, many existing tactile sensors do not have the ability to distinguish strain from pressure. Moreover, because they lack intrinsic adhesion capability, they require additional adhesive tapes for surface attachment. Herein, we present a self-attachable, pressure-insensitive strain sensor that can firmly adhere to target objects and selectively perceive tensile strain with high sensitivity. The proposed strain sensor is mainly composed of a bioinspired micropillar adhesive layer and a selectively coated active carbon nanotube (CNT) layer. We show that the bioinspired adhesive layer enables strong self-attachment of the sensor to diverse planar and nonplanar surfaces with a maximum adhesion strength of 257 kPa, while the thin film configuration of the patterned CNT layer enables high strain sensitivity (gauge factor (GF) of 2.26) and pressure insensitivity.
Collapse
|
9
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|
10
|
Liu L, Xiao X, Li K, Li X, Yu K, Liao X, Shi B. Prevention of Bacterial Colonization Based on Self-Assembled Metal-Phenolic Nanocoating from Rare-Earth Ions and Catechin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22237-22245. [PMID: 32312042 DOI: 10.1021/acsami.0c06459] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinically related infection is a critical risk for human health and is usually caused by biofilm formation on medical devices. Herein, typical polyphenols, catechin (Cat), and rare-earth ions (Re3+) were used for self-assembled Cat-Re nanoparticles that can be facilely coated on the surface of a polyamide (PA) membrane to synergistically prevent bacterial adhesion and subsequent biofilm formation. The antibacterial adhesion feature of the assembled Cat-Re nanoparticles coated on the PA membrane surface was assessed using Pseudomonas aeruginosa, one of the most common pathogenic bacteria, as probe bacteria under static and dynamic simulation flow conditions. The Cat-Re nanocoating showed excellent antibacterial and anti-adhesion activities against P. aeruginosa and successfully prevented biofilm formation on the material's surface. Regardless of the conditions, the Cat-Re nanocoating significantly suppressed the growth and attachment of P. aeruginosa and maintained >90% inhibition activity with favorable reusability and long-term stability. The results suggest that the self-assembled rare-earth-phenolic nanocoating has promising application potential in the prevention of medical device-related biofilm formation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Xiao Xiao
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Sichuan 610065, China
| | - Ke Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Xia Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Kang Yu
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Xuepin Liao
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Sichuan 610065, China
| | - Bi Shi
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Sichuan 610065, China
| |
Collapse
|